login
A334349
Total area of all r X s rectangles with integer side lengths such that r + s = n, r < s and (s - r) | (s * r).
0
0, 0, 2, 0, 6, 8, 12, 12, 38, 24, 30, 32, 42, 48, 196, 108, 72, 152, 90, 96, 406, 120, 132, 456, 306, 168, 524, 192, 210, 784, 240, 684, 1036, 288, 1050, 608, 342, 360, 1456, 1416, 420, 1624, 462, 480, 3120, 528, 552, 3188, 1188, 1224, 2506, 672, 702, 2096, 2832
OFFSET
1,3
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} i * (n-i) * (1 - ceiling(i*(n-i)/(n-2*i)) + floor(i*(n-i)/(n-2*i))).
EXAMPLE
a(9) = 38; 9 has two rectangles, 3 X 6 and 4 X 5, such that (6 - 3) | (6 * 3) = 3 | 18 and (5 - 4) | (5 * 4) = 1 | 20. The sum of the areas is then 3*6 + 4*5 = 18 + 20 = 38.
MATHEMATICA
Table[Sum[i (n - i) (1 - Ceiling[i (n - i)/(n - 2 i)] + Floor[i (n - i)/(n - 2 i)]), {i, Floor[(n - 1)/2]}], {n, 80}]
CROSSREFS
Sequence in context: A087996 A086777 A355978 * A058498 A358167 A348189
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 24 2020
STATUS
approved