login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least positive integer m relatively prime to n such that phi(m*n) = phi(m)*phi(n) is a fourth power, where phi is Euler's totient function (A000010).
2

%I #26 Apr 28 2020 21:11:13

%S 1,1,16,15,8,703,247,5,247,489,1255,5,109,247,4,3,1,247,73,3,109,1255,

%T 13315,163,753,109,73,109,1373,163,27331,1,625,1,81,109,57,73,1295,1,

%U 251,109,74663,625,949,13315,1557377,1,74663,753,16,81,175765,73,251,81,37,1373,243895,1

%N Least positive integer m relatively prime to n such that phi(m*n) = phi(m)*phi(n) is a fourth power, where phi is Euler's totient function (A000010).

%C Conjecture: For any positive integers k and m, there is a positive integer n relatively prime to m such that phi(m*n) = phi(m)*phi(n) is a k-th power.

%C This conjecture implies that a(n) exists for every n = 1,2,3,....

%C See also A334353 for a similar conjecture involving the sigma function (A000203).

%C a(n) = 1 if and only if n is in A078164. - _Charles R Greathouse IV_, Apr 24 2020

%H Zhi-Wei Sun, <a href="/A334350/b334350.txt">Table of n, a(n) for n = 1..226</a>

%H Zhi-Wei Sun, <a href="https://doi.org/10.1007/978-3-319-68032-3_20">Conjectures on representations involving primes</a>, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. See also <a href="http://arxiv.org/abs/1211.1588">arXiv</a>, arXiv:1211.1588 [math.NT], 2012-2017.

%e a(3) = 16 with gcd(3,16) = 1 and phi(3*16) = phi(3)*phi(16) = 2*8 = 2^4.

%e a(167) = 370517977 with gcd(167, 370517977) = 1 and phi(167*370517977) = phi(167)*phi(370517977) = 166*370517976 = 61505984016 = 498^4.

%t QQ[n_]:=QQ[n]=IntegerQ[n^(1/4)];

%t phi[n_]:=phi[n]=EulerPhi[n];

%t tab={};Do[m=0;Label[aa];m=m+1;If[GCD[m,n]==1&&QQ[phi[m]*phi[n]],tab=Append[tab,m],Goto[aa]],{n,1,60}];tab

%o (PARI) a(n) = my(m=1,e=eulerphi(n)); while (!((gcd(n, m) == 1) && ispower(e*eulerphi(m), 4)), m++); m; \\ _Michel Marcus_, Apr 25 2020

%Y Cf. A000010, A000203, A000583, A039770, A039771, A259915, A259916, A334337, A280988, A334339, A334353, A078164.

%K nonn

%O 1,3

%A _Zhi-Wei Sun_, Apr 24 2020