OFFSET
1,3
COMMENTS
Conjecture: a(n) exists for any n > 0. In other words, for any positive integer n, there is a positive integer m with phi(m*n) equal to a cube.
We note that there is no positive integer m <= 10^8 with phi(107*m) equal to a fourth power.
The author's conjecture in A259915 implies that for any positive integer n there is a positive integer m with phi(m*n) equal to a square.
See also A334339 for a similar conjecture.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
P. Pollack and C. Pomerance, Square values of Euler's function, Bull. London Math. Soc. 46 (2014), 403-414. Alternative link.
Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. See also arXiv, arXiv:1211.1588 [math.NT], 2012-2017. (Cf. Conjecture 4.5.)
EXAMPLE
a(3) = 5 with phi(3*5) = 2^3.
a(7) = 37 with phi(7*37) = 6^3.
a(863) = 21176773 with phi(863*21176773) = 17293606056 = 2586^3.
MATHEMATICA
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
phi[n_]:=phi[n]=EulerPhi[n];
tab={}; Do[m=0; Label[aa]; m=m+1; If[CQ[phi[m*n]], tab=Append[tab, m], Goto[aa]], {n, 1, 80}]; tab
PROG
(PARI) a(n) = my(m=1); while (!ispower(eulerphi(n*m), 3), m++); m; \\ Michel Marcus, Apr 23 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 23 2020
STATUS
approved