The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A333925 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j=2..k+1} 1/(1 - x^j). 1
 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 2, 1, 2, 0, 0, 1, 0, 1, 1, 2, 2, 3, 1, 1, 0, 1, 0, 1, 1, 2, 2, 3, 2, 2, 0, 0, 1, 0, 1, 1, 2, 2, 4, 3, 4, 2, 1, 0, 1, 0, 1, 1, 2, 2, 4, 3, 5, 3, 2, 0, 0, 1, 0, 1, 1, 2, 2, 4, 4, 6, 5, 5, 2, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,33 COMMENTS A(n,k) is the number of partitions of n into parts 2, 3, ..., k and k + 1. LINKS David A. Corneth, Table of n, a(n) for n = 0..10010 (first 141 rows antidiagonals flattened) FORMULA G.f. of column k: Product_{j=2..k+1} 1/(1 - x^j). EXAMPLE Square array begins:   1,  1,  1,  1,  1,  1,  ...   0,  0,  0,  0,  0,  0,  ...   0,  1,  1,  1,  1,  1,  ...   0,  0,  1,  1,  1,  1,  ...   0,  1,  1,  2,  2,  2,  ...   0,  0,  1,  1,  2,  2,  ... MATHEMATICA Table[Function[k, SeriesCoefficient[Product[1/(1 - x^j), {j, 2, k + 1}], {x, 0, n}]][i - n], {i, 0, 13}, {n, 0, i}] // Flatten CROSSREFS Columns k=0..12 give A000007, A059841, A103221, A266755, A008667, A037145, A001996, A266776, A266777, A266778, A266779, A266780, A266781. Main diagonal gives A002865. Cf. A008284, A058398. Sequence in context: A194821 A044934 A124761 * A342595 A156709 A081400 Adjacent sequences:  A333922 A333923 A333924 * A333926 A333927 A333928 KEYWORD nonn,tabl AUTHOR Ilya Gutkovskiy, Apr 10 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 00:16 EDT 2021. Contains 343957 sequences. (Running on oeis4.)