login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333925
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j=2..k+1} 1/(1 - x^j).
1
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 2, 1, 2, 0, 0, 1, 0, 1, 1, 2, 2, 3, 1, 1, 0, 1, 0, 1, 1, 2, 2, 3, 2, 2, 0, 0, 1, 0, 1, 1, 2, 2, 4, 3, 4, 2, 1, 0, 1, 0, 1, 1, 2, 2, 4, 3, 5, 3, 2, 0, 0, 1, 0, 1, 1, 2, 2, 4, 4, 6, 5, 5, 2, 1, 0
OFFSET
0,33
COMMENTS
A(n,k) is the number of partitions of n into parts 2, 3, ..., k and k + 1.
LINKS
David A. Corneth, Table of n, a(n) for n = 0..10010 (first 141 rows antidiagonals flattened)
FORMULA
G.f. of column k: Product_{j=2..k+1} 1/(1 - x^j).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
0, 1, 1, 1, 1, 1, ...
0, 0, 1, 1, 1, 1, ...
0, 1, 1, 2, 2, 2, ...
0, 0, 1, 1, 2, 2, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[Product[1/(1 - x^j), {j, 2, k + 1}], {x, 0, n}]][i - n], {i, 0, 13}, {n, 0, i}] // Flatten
CROSSREFS
Main diagonal gives A002865.
Sequence in context: A194821 A044934 A124761 * A342595 A156709 A081400
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Apr 10 2020
STATUS
approved