login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331685
Number of tree-factorizations of Heinz numbers of integer partitions of n.
1
1, 3, 7, 23, 69, 261, 943, 3815, 15107, 63219, 262791, 1130953, 4838813, 21185125, 92593943, 411160627, 1823656199, 8186105099, 36728532951, 166310761655
OFFSET
1,2
COMMENTS
A tree-factorization of n > 1 is either (case 1) the number n itself, or (case 2) a sequence of two or more tree-factorizations, one of each part of a weakly increasing factorization of n into factors > 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
FORMULA
a(n) = Sum_i A281118(A215366(n,i)).
EXAMPLE
The a(1) = 1 through a(4) = 23 tree-factorizations:
2 3 5 7
4 6 9
(2*2) 8 10
(2*3) 12
(2*4) 16
(2*2*2) (2*5)
(2*(2*2)) (2*6)
(2*8)
(3*3)
(3*4)
(4*4)
(2*2*3)
(2*2*4)
(2*2*2*2)
(2*(2*3))
((2*2)*4)
(2*(2*4))
(3*(2*2))
(4*(2*2))
(2*(2*2*2))
(2*2*(2*2))
((2*2)*(2*2))
(2*(2*(2*2)))
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
physemi[n_]:=Prepend[Join@@Table[Tuples[physemi/@f], {f, Select[facs[n], Length[#]>1&]}], n];
Table[Sum[Length[physemi[Times@@Prime/@m]], {m, IntegerPartitions[n]}], {n, 8}]
PROG
(PARI) \\ here TF(n) is n terms of A281118 as vector.
TF(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j] += w[k]^e*v[i]))); w}
a(n)={my(v=[prod(i=1, #p, prime(p[i])) | p<-partitions(n)], tf=TF(vecmax(v))); sum(i=1, #v, tf[v[i]])} \\ Andrew Howroyd, Dec 09 2020
CROSSREFS
The orderless version is A319312.
Factorizations are A001055.
P-trees are A196545.
Twice-factorizations are A281113.
Tree-factorizations are A281118.
Enriched p-trees are A289501.
Sequence in context: A148700 A151268 A148701 * A029891 A151454 A373496
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 31 2020
EXTENSIONS
a(13)-a(20) from Andrew Howroyd, Dec 09 2020
STATUS
approved