login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328502
Dirichlet g.f.: zeta(s-1) / (zeta(s) * zeta(s-2)).
1
1, -3, -7, -2, -21, 21, -43, -4, -12, 63, -111, 14, -157, 129, 147, -8, -273, 36, -343, 42, 301, 333, -507, 28, -80, 471, -36, 86, -813, -441, -931, -16, 777, 819, 903, 24, -1333, 1029, 1099, 84, -1641, -903, -1807, 222, 252, 1521, -2163, 56, -252, 240, 1911, 314, -2757, 108, 2331
OFFSET
1,2
COMMENTS
Dirichlet inverse of A057660.
LINKS
Olivier Bordelles, A Multidimensional Cesaro Type Identity and Applications, J. Int. Seq. 18 (2015) # 15.3.7.
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d<n} A057660(n/d) * a(d).
a(n) = Sum_{d|n} phi(n/d) * mu(d) * d^2.
Multiplicative with a(p) = p - 1 - p^2, and a(p^e) = -p^(e-1) * (p-1)^2, for e > 1. - Amiram Eldar, Dec 03 2022
a(n) = Sum_{k = 1..n} gcd(k, n)^2 * mu(gcd(k, n)) (follows fom an identity of Cesàro. See, for example, Bordelles, Lemma 1). - Peter Bala, Jan 16 2024
MATHEMATICA
a[1] = 1; a[n_] := -Sum[DivisorSigma[2, (n/d)^2]/DivisorSigma[1, (n/d)^2] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 55}]
Table[DivisorSum[n, EulerPhi[n/#] MoebiusMu[#] #^2 &], {n, 1, 55}]
f[p_, e_] := If[e == 1, p - 1 - p^2, -p^(e - 1)*(p - 1)^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
PROG
(PARI) a(n)={sumdiv(n, d, eulerphi(n/d)*moebius(d)*d^2)} \\ Andrew Howroyd, Oct 25 2019
CROSSREFS
Cf. A000010, A008683, A030230 (positions of negative terms), A057660, A101035.
Sequence in context: A245611 A063041 A257729 * A308480 A347772 A248214
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Oct 22 2019
STATUS
approved