OFFSET
1,2
COMMENTS
Dirichlet inverse of A057660.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Olivier Bordelles, A Multidimensional Cesaro Type Identity and Applications, J. Int. Seq. 18 (2015) # 15.3.7.
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d<n} A057660(n/d) * a(d).
a(n) = Sum_{d|n} phi(n/d) * mu(d) * d^2.
Multiplicative with a(p) = p - 1 - p^2, and a(p^e) = -p^(e-1) * (p-1)^2, for e > 1. - Amiram Eldar, Dec 03 2022
a(n) = Sum_{k = 1..n} gcd(k, n)^2 * mu(gcd(k, n)) (follows fom an identity of Cesàro. See, for example, Bordelles, Lemma 1). - Peter Bala, Jan 16 2024
MATHEMATICA
a[1] = 1; a[n_] := -Sum[DivisorSigma[2, (n/d)^2]/DivisorSigma[1, (n/d)^2] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 55}]
Table[DivisorSum[n, EulerPhi[n/#] MoebiusMu[#] #^2 &], {n, 1, 55}]
f[p_, e_] := If[e == 1, p - 1 - p^2, -p^(e - 1)*(p - 1)^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
PROG
(PARI) a(n)={sumdiv(n, d, eulerphi(n/d)*moebius(d)*d^2)} \\ Andrew Howroyd, Oct 25 2019
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Oct 22 2019
STATUS
approved