login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257729
Permutation of natural numbers: a(1)=1; a(prime(n)) = oddprime(a(n)), a(composite(n)) = not_an_oddprime(1+a(n)).
4
1, 3, 7, 2, 19, 6, 5, 12, 4, 28, 71, 10, 17, 9, 20, 8, 13, 40, 41, 95, 16, 26, 11, 15, 30, 14, 21, 56, 109, 57, 359, 125, 25, 38, 18, 24, 31, 44, 22, 32, 61, 77, 29, 143, 78, 445, 73, 162, 36, 54, 27, 35, 23, 45, 62, 33, 46, 84, 43, 104, 179, 42, 185, 105, 545, 98, 181, 208, 51, 75, 503, 39, 59, 50, 34, 63, 85, 48, 103, 64, 114, 60, 37
OFFSET
1,2
COMMENTS
Here composite(n) = n-th composite = A002808(n), prime(n) = n-th prime = A000040(n), oddprime(n) = n-th odd prime = A065091(n) = A000040(n+1), not_an_oddprime(n) = n-th natural number which is not an odd prime = A065090(n).
FORMULA
a(1) = 1; if A010051(n) = 1 [i.e., if n is a prime], then a(n) = A065091(a(A000720(n))), otherwise a(n) = A065090(1+a(A065855(n))).
As a composition of other permutations:
a(n) = A257728(A246377(n)).
a(n) = A257802(A257731(n)).
EXAMPLE
As an initial value we have a(1) = 1.
2 is the first prime (= A000040(1)), so we take the a(1)-th odd prime, A065091(1) = 3, thus a(2) = 3.
3 is the second prime, thus we take a(2)-th odd prime, A065091(3) = 7, thus a(3) = 7.
4 is the first composite, thus we take a(1)-th number larger than one which is not an odd prime, and that is A065090(1+1) = 2, thus a(4) = 2.
5 is the third prime, thus we take a(3)-th odd prime, which is A065091(7) = 19, thus a(5) = 19.
PROG
(PARI)
A002808(n) = { my(k=-1); while( -n + n += -k + k=primepi(n), ); n};
A257729(n) = { if(1==n, n, if(isprime(n), prime(1+A257729(primepi(n))), if(4==n, 2, A002808(A257729(n-primepi(n)-1)-1))))};
for(n=1, 10000, write("b257729.txt", n, " ", A257729(n)));
\\ After M. F. Hasler's PARI-code for A236854.
(Scheme, with memoizing definec-macro)
(definec (A257729 n) (cond ((<= n 1) n) ((= 1 (A010051 n)) (A065091 (A257729 (A000720 n)))) (else (A065090 (+ 1 (A257729 (A065855 n)))))))
;; Alternatively, by composing other permutations:
(define (A257729 n) (A257728 (A246377 n)))
CROSSREFS
Inverse: A257730.
Related or similar permutations: A257728, A246377, A257731, A257802, A236854.
Sequence in context: A324713 A245611 A063041 * A328502 A308480 A347772
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 09 2015
STATUS
approved