login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308480 a(n) = A000225(n) if n is prime, a(n) = A020639(n) otherwise. 0
3, 7, 2, 31, 2, 127, 2, 3, 2, 2047, 2, 8191, 2, 3, 2, 131071, 2, 524287, 2, 3, 2, 8388607, 2, 5, 2, 3, 2, 536870911, 2, 2147483647, 2, 3, 2, 5, 2, 137438953471, 2, 3, 2, 2199023255551, 2, 8796093022207, 2, 3, 2, 140737488355327, 2, 7, 2, 3, 2, 9007199254740991 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

What is the asymptotic behavior of the sequences defined by the recursive map x -> a(x)? Do these sequences increase without bound or do they enter a repeating cycle?

For example, the trajectory of 11 under the above map starts 11, 2047, 23, 8388607, 47, 140737488355327, 2351, s, 4703, t, ..., where s is a 708-digit number and t is a 1416-digit number. t has no prime factor less than 2^64 (cf. GIMPS link).

LINKS

Table of n, a(n) for n=2..53.

GIMPS, PrimeNet Exponent Status for M4703

PROG

(PARI) a(n) = if(ispseudoprime(n), 2^n-1, factor(n)[1, 1])

CROSSREFS

Cf. A000225, A006370, A020639.

Sequence in context: A063041 A257729 A328502 * A347772 A248214 A144713

Adjacent sequences:  A308477 A308478 A308479 * A308481 A308482 A308483

KEYWORD

nonn

AUTHOR

Felix Fröhlich, May 30 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 04:36 EDT 2022. Contains 357261 sequences. (Running on oeis4.)