login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328503
a(1) = 1; a(n) = the least prime factor of a(n-1) if a(n-1) is a composite number, otherwise a(n) = a(n-1) + n.
1
1, 3, 6, 2, 7, 13, 20, 2, 11, 21, 3, 15, 3, 17, 32, 2, 19, 37, 56, 2, 23, 45, 3, 27, 3, 29, 56, 2, 31, 61, 92, 2, 35, 5, 40, 2, 39, 3, 42, 2, 43, 85, 5, 49, 7, 53, 100, 2, 51, 3, 54, 2, 55, 5, 60, 2, 59, 117, 3, 63, 3, 65, 5, 69, 3, 69, 3, 71, 140, 2, 73
OFFSET
1,2
COMMENTS
Will all prime numbers appear in this sequence?
LINKS
EXAMPLE
a(7)=20, a(8) = least prime factor of 20 = 2.
a(9)=11, a(10) = 11+10 = 21.
MAPLE
f:= proc(n) local q; option remember;
q:= procname(n-1);
if isprime(q) then q+n
else min(numtheory:-factorset(q))
fi
end proc:
f(1):= 1: f(2):=3:
map(f, [$1..100]); # Robert Israel, Oct 25 2019
MATHEMATICA
a[1] = 1; a[n_] := a[n] = If[CompositeQ[a[n - 1]], FactorInteger[a[n - 1]][[1, 1]], a[n - 1] + n]; Array[a, 100] (* Amiram Eldar, Oct 23 2019 *)
nxt[{n_, a_}]:={n+1, If[CompositeQ[a], FactorInteger[a][[1, 1]], a+n+1]}; NestList[nxt, {1, 1}, 70] [[;; , 2]] (* Harvey P. Dale, Oct 15 2023 *)
PROG
(PARI) for (n=1, 71, print1 (v=if (n==1, 1, bigomega(f=factor(v))>1, f[1, 1], v+n) ", ")) \\ Rémy Sigrist, Oct 23 2019
CROSSREFS
Sequence in context: A072007 A078783 A273465 * A333826 A125717 A065232
KEYWORD
nonn,look
AUTHOR
Ali Sada, Oct 22 2019
STATUS
approved