login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327905
FDH numbers of pairwise coprime sets.
0
2, 6, 8, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 32, 33, 34, 35, 38, 40, 42, 44, 46, 48, 50, 52, 55, 56, 57, 58, 62, 63, 66, 68, 70, 74, 75, 76, 77, 80, 82, 84, 86, 88, 91, 93, 94, 95, 96, 98, 99, 100, 104, 106, 110, 112, 114, 116, 118, 122, 123, 125, 126, 132
OFFSET
1,1
COMMENTS
Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH-number of a strict partition or finite set {y_1,...,y_k} is f(y_1)*...*f(y_k).
We use the Mathematica function CoprimeQ, meaning a singleton is not coprime unless it is {1}.
LINKS
Wolfram Language Documentation, CoprimeQ
EXAMPLE
The sequence of terms together with their corresponding coprime sets begins:
2: {1}
6: {1,2}
8: {1,3}
10: {1,4}
12: {2,3}
14: {1,5}
18: {1,6}
20: {3,4}
21: {2,5}
22: {1,7}
24: {1,2,3}
26: {1,8}
28: {3,5}
32: {1,9}
33: {2,7}
34: {1,10}
35: {4,5}
38: {1,11}
40: {1,3,4}
42: {1,2,5}
MATHEMATICA
FDfactor[n_]:=If[n==1, {}, Sort[Join@@Cases[FactorInteger[n], {p_, k_}:>Power[p, Cases[Position[IntegerDigits[k, 2]//Reverse, 1], {m_}->2^(m-1)]]]]];
nn=100; FDprimeList=Array[FDfactor, nn, 1, Union];
FDrules=MapIndexed[(#1->#2[[1]])&, FDprimeList];
Select[Range[nn], CoprimeQ@@(FDfactor[#]/.FDrules)&]
CROSSREFS
Heinz numbers of pairwise coprime partitions are A302696 (all), A302797 (strict), A302569 (with singletons), and A302798 (strict with singletons).
FDH numbers of relatively prime sets are A319827.
Sequence in context: A173634 A005795 A319827 * A157502 A216032 A076300
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 30 2019
STATUS
approved