OFFSET
1,1
COMMENTS
Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH-number of a strict partition or finite set {y_1,...,y_k} is f(y_1)*...*f(y_k).
We use the Mathematica function CoprimeQ, meaning a singleton is not coprime unless it is {1}.
LINKS
Wolfram Language Documentation, CoprimeQ
EXAMPLE
The sequence of terms together with their corresponding coprime sets begins:
2: {1}
6: {1,2}
8: {1,3}
10: {1,4}
12: {2,3}
14: {1,5}
18: {1,6}
20: {3,4}
21: {2,5}
22: {1,7}
24: {1,2,3}
26: {1,8}
28: {3,5}
32: {1,9}
33: {2,7}
34: {1,10}
35: {4,5}
38: {1,11}
40: {1,3,4}
42: {1,2,5}
MATHEMATICA
FDfactor[n_]:=If[n==1, {}, Sort[Join@@Cases[FactorInteger[n], {p_, k_}:>Power[p, Cases[Position[IntegerDigits[k, 2]//Reverse, 1], {m_}->2^(m-1)]]]]];
nn=100; FDprimeList=Array[FDfactor, nn, 1, Union];
FDrules=MapIndexed[(#1->#2[[1]])&, FDprimeList];
Select[Range[nn], CoprimeQ@@(FDfactor[#]/.FDrules)&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 30 2019
STATUS
approved