OFFSET
0,3
COMMENTS
A set-system is a set of nonempty sets. It is covering if there are no isolated (uncovered) vertices.
LINKS
EXAMPLE
The a(3) = 77 set-systems:
123 1-23 1-2-3 1-2-3-13 1-2-3-13-23 1-2-3-13-23-123
2-13 1-2-13 1-2-3-23 1-2-12-13-23 1-2-12-13-23-123
1-123 1-2-23 1-2-12-13 1-2-3-13-123
12-13 1-3-23 1-2-12-23 1-2-3-23-123
12-23 2-3-13 1-2-13-23 1-2-12-13-123
13-23 1-12-13 1-2-3-123 1-2-12-23-123
2-123 1-12-23 1-3-13-23 1-2-13-23-123
3-123 1-13-23 2-3-13-23 1-3-13-23-123
12-123 1-2-123 1-12-13-23 2-3-13-23-123
13-123 1-3-123 1-2-12-123 1-12-13-23-123
23-123 2-12-13 1-2-13-123 2-12-13-23-123
2-12-23 1-2-23-123
2-13-23 1-3-13-123
2-3-123 1-3-23-123
3-13-23 2-12-13-23
1-12-123 2-3-13-123
1-13-123 2-3-23-123
12-13-23 1-12-13-123
1-23-123 1-12-23-123
2-12-123 1-13-23-123
2-13-123 2-12-13-123
2-23-123 2-12-23-123
3-13-123 2-13-23-123
3-23-123 3-13-23-123
12-13-123 12-13-23-123
12-23-123
13-23-123
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
qes[n_]:=Select[stableSets[Subsets[Range[n], {1, n}], Total[#1]==Total[#2]&], Union@@#==Range[n]&];
Table[Length[qes[n]], {n, 0, 4}]
PROG
(PARI) \\ by inclusion/exclusion on covered vertices.
C(v)={my(u=Vecrev(-1 + prod(k=1, #v, 1 + x^v[k]))); prod(i=1, #u, 1 + u[i])}
a(n)={my(s=0); forsubset(n, v, s += (-1)^(n-#v)*C(v)); s} \\ Andrew Howroyd, Oct 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 30 2019
EXTENSIONS
Terms a(4) and beyond from Andrew Howroyd, Oct 02 2019
STATUS
approved