OFFSET
1,2
COMMENTS
The matrix is the upper-left n X n part of the square arrangement in A081344.
Conjecture: a(n) has trailing zeros for n > 3. - Stefano Spezia, May 31 2023
The conjecture is true and its proof follows easily from Detlef Meya's formula. - Stefano Spezia, Apr 20 2024
LINKS
Stefano Spezia, Table of n, a(n) for n = 1..400
Nicolay Avilov, Illustration of a(1)-a(5)
FORMULA
a(1) = 1, for a > 1: a(n) = (-1)^(n-1)*2^(n-3)*(2*n*(n-1)+1)*(n!). - Detlef Meya, Jun 11 2023
E.g.f.: x*(2 + 7*x + 20*x^2 + 12*x^3)/(2*(1 + 2*x)^3). - Stefano Spezia, Apr 20 2024
EXAMPLE
| 1----2 9---10 25 |
| | | | | |
| 4----3 8 11 24 |
| | | | | |
a(5) = | 5----6----7 12 23 | = 19680.
| | | |
| 16---15---14---13 22 |
| | | |
| 17---18---19---20---21 |
MATHEMATICA
a={}; For[n=1, n<=19, n++, k=i=j=1; M[i, j]=k++; For[h=1, h<n, h++, If[i==j==1, M[i, ++j]=k++; For[c=1, c<=h, c++, M[++i, j]=k++; M[i, --j]=k++], If[j==1 && i!=1, M[++i, j]=k++; For[c=1, c<=h, c++, M[i, ++j]=k++]; For[c=1, c<=h, c++, M[--i, j]=k++], If[i==1 &&j!=1, M[i, ++j]=k++; For[c=1, c<=h, c++, M[++i, j]=k++]; For[c=1, c<=h, c++, M[i, --j]=k++]]]]]; AppendTo[a, Det[Table[M[i, j], {i, n}, {j, n}]]]]; a (* Stefano Spezia, May 31 2023 *)
a={1}; For[n=2, n<20, n++, AppendTo[a, (-1)^(n-1)*2^(n-3)*(2*n*(n-1)+1)*n!]]; a (* Detlef Meya, Jun 11 2023 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Nicolay Avilov, May 29 2023
EXTENSIONS
a(16)-a(19) from Stefano Spezia, May 31 2023
STATUS
approved