Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #6 Oct 01 2019 09:49:50
%S 2,6,8,10,12,14,18,20,21,22,24,26,28,32,33,34,35,38,40,42,44,46,48,50,
%T 52,55,56,57,58,62,63,66,68,70,74,75,76,77,80,82,84,86,88,91,93,94,95,
%U 96,98,99,100,104,106,110,112,114,116,118,122,123,125,126,132
%N FDH numbers of pairwise coprime sets.
%C Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH-number of a strict partition or finite set {y_1,...,y_k} is f(y_1)*...*f(y_k).
%C We use the Mathematica function CoprimeQ, meaning a singleton is not coprime unless it is {1}.
%H Wolfram Language Documentation, <a href="https://reference.wolfram.com/language/ref/CoprimeQ.html">CoprimeQ</a>
%e The sequence of terms together with their corresponding coprime sets begins:
%e 2: {1}
%e 6: {1,2}
%e 8: {1,3}
%e 10: {1,4}
%e 12: {2,3}
%e 14: {1,5}
%e 18: {1,6}
%e 20: {3,4}
%e 21: {2,5}
%e 22: {1,7}
%e 24: {1,2,3}
%e 26: {1,8}
%e 28: {3,5}
%e 32: {1,9}
%e 33: {2,7}
%e 34: {1,10}
%e 35: {4,5}
%e 38: {1,11}
%e 40: {1,3,4}
%e 42: {1,2,5}
%t FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
%t nn=100;FDprimeList=Array[FDfactor,nn,1,Union];
%t FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
%t Select[Range[nn],CoprimeQ@@(FDfactor[#]/.FDrules)&]
%Y Heinz numbers of pairwise coprime partitions are A302696 (all), A302797 (strict), A302569 (with singletons), and A302798 (strict with singletons).
%Y FDH numbers of relatively prime sets are A319827.
%Y Cf. A050376, A056239, A064547, A213925, A259936, A299755, A299757, A304711, A319826, A326675.
%K nonn
%O 1,1
%A _Gus Wiseman_, Sep 30 2019