Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Oct 01 2019 09:49:50
%S 2,6,8,10,12,14,18,20,21,22,24,26,28,32,33,34,35,38,40,42,44,46,48,50,
%T 52,55,56,57,58,62,63,66,68,70,74,75,76,77,80,82,84,86,88,91,93,94,95,
%U 96,98,99,100,104,106,110,112,114,116,118,122,123,125,126,132
%N FDH numbers of pairwise coprime sets.
%C Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH-number of a strict partition or finite set {y_1,...,y_k} is f(y_1)*...*f(y_k).
%C We use the Mathematica function CoprimeQ, meaning a singleton is not coprime unless it is {1}.
%H Wolfram Language Documentation, <a href="https://reference.wolfram.com/language/ref/CoprimeQ.html">CoprimeQ</a>
%e The sequence of terms together with their corresponding coprime sets begins:
%e 2: {1}
%e 6: {1,2}
%e 8: {1,3}
%e 10: {1,4}
%e 12: {2,3}
%e 14: {1,5}
%e 18: {1,6}
%e 20: {3,4}
%e 21: {2,5}
%e 22: {1,7}
%e 24: {1,2,3}
%e 26: {1,8}
%e 28: {3,5}
%e 32: {1,9}
%e 33: {2,7}
%e 34: {1,10}
%e 35: {4,5}
%e 38: {1,11}
%e 40: {1,3,4}
%e 42: {1,2,5}
%t FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
%t nn=100;FDprimeList=Array[FDfactor,nn,1,Union];
%t FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
%t Select[Range[nn],CoprimeQ@@(FDfactor[#]/.FDrules)&]
%Y Heinz numbers of pairwise coprime partitions are A302696 (all), A302797 (strict), A302569 (with singletons), and A302798 (strict with singletons).
%Y FDH numbers of relatively prime sets are A319827.
%Y Cf. A050376, A056239, A064547, A213925, A259936, A299755, A299757, A304711, A319826, A326675.
%K nonn
%O 1,1
%A _Gus Wiseman_, Sep 30 2019