login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327571
Triangle T(n,k) read by rows giving the number of zeroless polydivisible numbers in base n that contains only "k" in the digits with 1 <= k <= n-1.
2
1, 2, 2, 1, 3, 1, 2, 2, 4, 2, 1, 2, 1, 2, 1, 4, 4, 4, 4, 6, 4, 1, 2, 1, 2, 1, 3, 1, 2, 2, 4, 2, 2, 4, 2, 2, 1, 3, 1, 4, 1, 3, 1, 4, 1, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4
OFFSET
2,2
LINKS
FORMULA
T(n,1) = T(n,n-1) = A071222(n-2).
T(n,1) <= T(n,k).
T(n,2*m) >= 2 for m >= 1.
EXAMPLE
n | zeroless polydivisible numbers with all digits the same in base n
--+------------------------------------------------------------------
2 | [1]
3 | [1, 11], [2, 22]
4 | [1], [2, 22, 222], [3]
So T(2,1) = 1, T(3,1) = 2, T(3,2) = 2, T(4,1) = 1, T(4,2) = 3, T(4,3) = 1.
Triangle begins:
n\k | 1 2 3 4 5 6 7 8 9 10 11 12
-----+------------------------------------
2 | 1;
3 | 2, 2;
4 | 1, 3, 1;
5 | 2, 2, 4, 2;
6 | 1, 2, 1, 2, 1;
7 | 4, 4, 4, 4, 6, 4;
8 | 1, 2, 1, 2, 1, 3, 1;
9 | 2, 2, 4, 2, 2, 4, 2, 2;
10 | 1, 3, 1, 4, 1, 3, 1, 4, 1;
11 | 2, 2, 6, 2, 2, 6, 2, 2, 6, 2;
12 | 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1;
13 | 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4;
PROG
(Ruby)
def T(k, n)
s = 0
(0..n - 2).each{|i|
s += k * n ** i
return i if s % (i + 1) > 0
}
n - 1
end
def A327571(n)
(2..n).map{|i| (1..i - 1).map{|j| T(j, i)}}.flatten
end
p A327571(10)
CROSSREFS
Row sums give A327577.
Sequence in context: A072528 A368060 A227083 * A166363 A117470 A070786
KEYWORD
nonn,tabl,base
AUTHOR
Seiichi Manyama, Sep 17 2019
STATUS
approved