login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071222 Smallest k such that gcd(n,k) = gcd(n+1,k+1). 8
1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = least m>0 such that gcd(n!+1+m,n-m) = 1.  [Clark Kimberling, Jul 21 2012]

From Antti Karttunen, Jan 26 2014: (Start)

a(n-1)+1 = A053669(n) = Smallest k >= 2 coprime to n = Smallest prime not dividing n.

Note that a(n) is equal to A235918(n+1) for the first 209 values of n. The first difference occurs at n=210 and A235921 lists the integers n for which a(n) differs from A235918(n+1).

(End)

LINKS

Clark Kimberling & Antti Karttunen, Table of n, a(n) for n = 0..10001 (Terms up to n=1000 from Kimberling)

MATHEMATICA

sgcd[n_]:=Module[{k=1}, While[GCD[n, k]!=GCD[n+1, k+1], k++]; k]; Array[sgcd, 110] (* Harvey P. Dale, Jul 13 2012 *)

PROG

(PARI) for(n=1, 140, s=1; while(gcd(s, n)<gcd(n+1, s+1), s++); print1(s, ", "))

(Scheme) (define (A071222 n) (let loop ((k 1)) (cond ((= (gcd n k) (gcd (+ n 1) (+ k 1))) k) (else (loop (+ 1 k)))))) ;; Antti Karttunen, Jan 26 2014

(Haskell)

a071222 n = head [k | k <- [1..], gcd (n + 1) (k + 1) == gcd n k]

-- Reinhard Zumkeller, Oct 01 2014

CROSSREFS

One less than A053669(n+1).

Cf. also A007978, A055874, A235918, A235921.

Sequence in context: A324575 A035400 A235918 * A067005 A230849 A135517

Adjacent sequences:  A071219 A071220 A071221 * A071223 A071224 A071225

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Jun 10 2002

EXTENSIONS

Added a(0)=1. - N. J. A. Sloane, Jan 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 04:32 EST 2020. Contains 332217 sequences. (Running on oeis4.)