OFFSET
1,2
COMMENTS
Row n contains ceiling((sqrt(9+8n)-3)/2) terms, i.e., 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, ...
Row sums yield A034296.
FORMULA
EXAMPLE
T(9,2)=4 because we have [4,3,2],[3,3,2,1],[3,2,2,1,1] and [3,2,1,1,1,1].
Triangle starts:
1;
2;
2, 1;
3, 1;
2, 3;
4, 2, 1;
2, 5, 1;
MAPLE
g:=sum(x^j*product(1+t*x^i, i=1..j-1)/(1-x^j), j=1..30): gser:=simplify(series(g, x=0, 28)): for n from 1 to 28 do P[n]:=sort(coeff(gser, x^n)) od: for n from 1 to 25 do seq(coeff(P[n], t, j), j=0..ceil((sqrt(9+8*n)-5)/2)) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Mar 20 2006
STATUS
approved