OFFSET
1,2
COMMENTS
a(n)=Sum(k*A117468(n,k),k=1..n).
FORMULA
G.f.=sum(x^j*product(1+x^i, i=1..j-1)*[1+(1-x^j)sum(x^i/(1+x^i), i=1..j-1)]/(1-x^j)^2, j=1..infinity) (obtained by taking the derivative with respect to t of the g.f. G(t,x) of A117468 and setting t=1).
EXAMPLE
a(5)=13 because in the 5 (=A034296(5)) partitions in which every integer from the smallest to the largest part occurs, namely [5],[3,2],[2,2,1],[2,1,1,1] and [1,1,1,1,1], the sum of the largest parts is 5+3+2+2+1=13.
MAPLE
g:=sum(x^j*product(1+x^i, i=1..j-1)*(1+(1-x^j)*sum(x^i/(1+x^i), i=1..j-1))/(1-x^j)^2, j=1..70): gser:=series(g, x=0, 60): seq(coeff(gser, x, n), n=1..55);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 19 2006
STATUS
approved