OFFSET
1,2
LINKS
D. Wilson et al., Interesting sequence, SeqFan list, Nov. 2016
FORMULA
By definition, a(n)=(1/2)[...[[[[n(2/1)](4/3)](6/5)]...(2k+2)/(2k+1)]..., where [x] = floor of x; this infinite nested floor product will eventually level-off at a(n).
a(n) = (A000960(n+1)-1)/2, cf. link to posts on the SeqFan list. - M. F. Hasler, Nov 23 2016 [This may only be a conjecture? - N. J. A. Sloane, Nov 23 2016]
EXAMPLE
a(3) = 6 since (1/2)[[[[[[3(2/1)](4/3)](6/5)](8/7)](10/9)](12/11)] = (1/2)[[[[[6(4/3)](6/5)](8/7)](10/9)](12/11)] = (1/2)[[[[8(6/5)](8/7)](10/9)](12/11)] = (1/2)[[[9(8/7)](10/9)](12/11)] = (1/2)[[10(10/9)](12/11)] = (1/2)[11(12/11)] = 6. [Minor correction by M. F. Hasler, Nov 23 2016]
PROG
(PARI) apply( A073359(n)=forstep(k=2, 9e9, 2, n==(n=floor(n*k/(k-1)))&&return(n\2)), [1..100]) \\ M. F. Hasler, Nov 23 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna, Jul 29 2002
STATUS
approved