login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117466
Triangle read by rows: T(n,k) is the number of partitions of n in which every integer from the smallest part k to the largest part occurs (1<=k<=n).
3
1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 3, 1, 0, 0, 1, 4, 1, 1, 0, 0, 1, 5, 1, 1, 0, 0, 0, 1, 6, 2, 0, 1, 0, 0, 0, 1, 8, 2, 1, 1, 0, 0, 0, 0, 1, 10, 2, 1, 0, 1, 0, 0, 0, 0, 1, 12, 3, 1, 0, 1, 0, 0, 0, 0, 0, 1, 15, 3, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 18, 4, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 22, 5, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0
OFFSET
1,4
COMMENTS
Row sums yield A034296. T(n,1) = A000009(n). sum(k*T(n,k), k=1..n) = A117467(n).
LINKS
FORMULA
G.f.: G(t,x) = sum(tx^j*product(1+x^i, i=1..j-1)/(1-tx^j), j >=1).
EXAMPLE
T(11,2) = 3 because we have [4,3,2,2], [3,3,3,2] and [3,2,2,2,2].
Triangle starts:
1;
1,1;
2,0,1;
2,1,0,1;
3,1,0,0,1;
4,1,1,0,0,1;
MAPLE
g:= sum(t*x^j*product(1+x^i, i=1..j-1)/(1-t*x^j), j=1..50): gser:=simplify(series(g, x=0, 17)): for n from 1 to 14 do P[n]:=sort(coeff(gser, x^n)) od: for n from 1 to 14 do seq(coeff(P[n], t, j), j=1..n) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n, k, i) option remember;
`if`(n<0, 0, `if`(n=0, 1, `if`(i<k, 0, b(n, k, i-1)+
`if`(i>n, 0, b(n-i, k, i)) )))
end:
T:= (n, k)-> add(b(n-(i+k)*(i+1-k)/2, k, i), i=k..n):
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Jul 06 2012
MATHEMATICA
b[n_, k_, i_] := b[n, k, i] = If[n<0, 0, If[n == 0, 1, If[i<k, 0, b[n, k, i-1] + If[i>n, 0, b[n-i, k, i]]]]]; T[n_, k_] := Sum[b[n-(i+k)*(i+1-k)/2, k, i], {i, k, n}]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl,look
AUTHOR
Emeric Deutsch, Mar 19 2006
STATUS
approved