Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 19 2015 05:21:29
%S 1,1,1,2,0,1,2,1,0,1,3,1,0,0,1,4,1,1,0,0,1,5,1,1,0,0,0,1,6,2,0,1,0,0,
%T 0,1,8,2,1,1,0,0,0,0,1,10,2,1,0,1,0,0,0,0,1,12,3,1,0,1,0,0,0,0,0,1,15,
%U 3,2,1,0,1,0,0,0,0,0,1,18,4,1,1,0,1,0,0,0,0,0,0,1,22,5,1,1,0,0,1,0,0,0,0,0
%N Triangle read by rows: T(n,k) is the number of partitions of n in which every integer from the smallest part k to the largest part occurs (1<=k<=n).
%C Row sums yield A034296. T(n,1) = A000009(n). sum(k*T(n,k), k=1..n) = A117467(n).
%H Alois P. Heinz, <a href="/A117466/b117466.txt">Rows n = 1..141, flattened</a>
%F G.f.: G(t,x) = sum(tx^j*product(1+x^i, i=1..j-1)/(1-tx^j), j >=1).
%e T(11,2) = 3 because we have [4,3,2,2], [3,3,3,2] and [3,2,2,2,2].
%e Triangle starts:
%e 1;
%e 1,1;
%e 2,0,1;
%e 2,1,0,1;
%e 3,1,0,0,1;
%e 4,1,1,0,0,1;
%p g:= sum(t*x^j*product(1+x^i,i=1..j-1)/(1-t*x^j),j=1..50): gser:=simplify(series(g,x=0,17)): for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 14 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form
%p # second Maple program:
%p b:= proc(n, k, i) option remember;
%p `if`(n<0, 0, `if`(n=0, 1, `if`(i<k, 0, b(n, k, i-1)+
%p `if`(i>n, 0, b(n-i, k, i)) )))
%p end:
%p T:= (n, k)-> add(b(n-(i+k)*(i+1-k)/2, k, i), i=k..n):
%p seq(seq(T(n, k), k=1..n), n=1..14); # _Alois P. Heinz_, Jul 06 2012
%t b[n_, k_, i_] := b[n, k, i] = If[n<0, 0, If[n == 0, 1, If[i<k, 0, b[n, k, i-1] + If[i>n, 0, b[n-i, k, i]]]]]; T[n_, k_] := Sum[b[n-(i+k)*(i+1-k)/2, k, i], {i, k, n}]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* _Jean-François Alcover_, Feb 19 2015, after _Alois P. Heinz_ *)
%Y Cf. A034296, A000009, A117467.
%K nonn,tabl,look
%O 1,4
%A _Emeric Deutsch_, Mar 19 2006