login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117170
Triangle of coefficients for the Inverse Shift-Moebius transform, read by rows.
7
1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 3, 1, 0, 0, 1, 3, 2, 1, 0, 0, 1, 4, 1, 1, 0, 0, 0, 1, 3, 3, 1, 1, 0, 0, 0, 1, 6, 1, 2, 1, 0, 0, 0, 0, 1, 5, 4, 1, 1, 1, 0, 0, 0, 0, 1, 5, 2, 2, 1, 1, 0, 0, 0, 0, 0, 1, 6, 4, 2, 2, 1, 1, 0, 0, 0, 0, 0, 1, 7, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 7, 6, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,4
COMMENTS
Column k = Inverse-Shift-Moebius transform of all zeros except for a single '1' in position k: [0,0,0,..(k-1)zeros..,1,0,0,0,...].
Column 1 is A117171 and equals Inverse-Shift-Moebius([1,0,0,0,...]).
Column 2 is A117172 and equals Inverse-Shift-Moebius([0,1,0,0,...]).
Column 3 is A117173 and equals Inverse-Shift-Moebius([0,0,1,0,...]).
Row sums give A117174 and equals Inverse-Shift-Moebius([1,1,1,...]).
EXAMPLE
Triangle begins:
1;
1, 1;
2, 0, 1;
2, 1, 0, 1;
3, 1, 0, 0, 1;
3, 2, 1, 0, 0, 1;
4, 1, 1, 0, 0, 0, 1;
3, 3, 1, 1, 0, 0, 0, 1;
6, 1, 2, 1, 0, 0, 0, 0, 1;
5, 4, 1, 1, 1, 0, 0, 0, 0, 1;
5, 2, 2, 1, 1, 0, 0, 0, 0, 0, 1;
6, 4, 2, 2, 1, 1, 0, 0, 0, 0, 0, 1;
7, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1;
7, 6, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1;
10, 3, 4, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1;
7, 6, 2, 3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1; ...
PROG
(PARI) {T(n, k)=if(n<k, 0, prod(i=0, n, matrix(n, n, r, c, if(r>=c, if((r+i)%(c+i)==0, 1, 0))))[n, k])}
CROSSREFS
Cf. A117171 (column 1), A117172 (column 2), A117173 (column 3), A117174 (row sums), A117165 (inverse), A117162, A008683; A117176.
Sequence in context: A158948 A140224 A075993 * A117466 A136266 A292047
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved