login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) read by rows giving the number of zeroless polydivisible numbers in base n that contains only "k" in the digits with 1 <= k <= n-1.
2

%I #48 Sep 18 2019 13:43:27

%S 1,2,2,1,3,1,2,2,4,2,1,2,1,2,1,4,4,4,4,6,4,1,2,1,2,1,3,1,2,2,4,2,2,4,

%T 2,2,1,3,1,4,1,3,1,4,1,2,2,6,2,2,6,2,2,6,2,1,2,1,2,1,3,1,2,1,2,1,4,4,

%U 4,4,6,4,4,4,4,6,4,4

%N Triangle T(n,k) read by rows giving the number of zeroless polydivisible numbers in base n that contains only "k" in the digits with 1 <= k <= n-1.

%H Seiichi Manyama, <a href="/A327571/b327571.txt">Rows n = 2..141, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Polydivisible_number">Polydivisible number</a>.

%F T(n,1) = T(n,n-1) = A071222(n-2).

%F T(n,1) <= T(n,k).

%F T(n,2*m) >= 2 for m >= 1.

%e n | zeroless polydivisible numbers with all digits the same in base n

%e --+------------------------------------------------------------------

%e 2 | [1]

%e 3 | [1, 11], [2, 22]

%e 4 | [1], [2, 22, 222], [3]

%e So T(2,1) = 1, T(3,1) = 2, T(3,2) = 2, T(4,1) = 1, T(4,2) = 3, T(4,3) = 1.

%e Triangle begins:

%e n\k | 1 2 3 4 5 6 7 8 9 10 11 12

%e -----+------------------------------------

%e 2 | 1;

%e 3 | 2, 2;

%e 4 | 1, 3, 1;

%e 5 | 2, 2, 4, 2;

%e 6 | 1, 2, 1, 2, 1;

%e 7 | 4, 4, 4, 4, 6, 4;

%e 8 | 1, 2, 1, 2, 1, 3, 1;

%e 9 | 2, 2, 4, 2, 2, 4, 2, 2;

%e 10 | 1, 3, 1, 4, 1, 3, 1, 4, 1;

%e 11 | 2, 2, 6, 2, 2, 6, 2, 2, 6, 2;

%e 12 | 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1;

%e 13 | 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4;

%o (Ruby)

%o def T(k, n)

%o s = 0

%o (0..n - 2).each{|i|

%o s += k * n ** i

%o return i if s % (i + 1) > 0

%o }

%o n - 1

%o end

%o def A327571(n)

%o (2..n).map{|i| (1..i - 1).map{|j| T(j, i)}}.flatten

%o end

%o p A327571(10)

%Y Row sums give A327577.

%Y Cf. A071222, A327545.

%K nonn,tabl,base

%O 2,2

%A _Seiichi Manyama_, Sep 17 2019