login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327569
Exponent of the group SL(2, Z_n).
1
1, 6, 12, 12, 60, 12, 168, 24, 36, 60, 660, 12, 1092, 168, 60, 48, 2448, 36, 3420, 60, 168, 660, 6072, 24, 300, 1092, 108, 168, 12180, 60, 14880, 96, 660, 2448, 840, 36, 25308, 3420, 1092, 120, 34440, 168, 39732, 660, 180, 6072, 51888, 48, 1176, 300, 2448, 1092, 74412, 108, 660, 168
OFFSET
1,2
COMMENTS
The exponent of a finite group G is the least positive integer k such that x^k = e for all x in G, where e is the identity of the group. That is to say, the exponent of a finite group G is the LCM of the orders of elements in G. Of course, the exponent divides the order of the group.
LINKS
FORMULA
If gcd(m, n) = 1 then a(m*n) = lcm(a(m), a(n)).
Conjecture: a(p^e) = (p^2-1)*p^e/2 for primes p > 2 and 3*2^e for p = 2. If this is true, then 12 divides a(n) for n > 2.
EXAMPLE
SL(2, Z_2) is isomorphic to S_3, which has 1 identity element, 3 elements with order 2 and 2 elements with order 3, so a(2) = lcm(1, 2, 3) = 6.
PROG
(PARI)
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++; N=N*M); k}
a(n)={my(m=1); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, m=lcm(m, MatOrder(M))))))); m} \\ Following Andrew Howroyd's program for A316563
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 17 2019
STATUS
approved