login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181797
a(n) = n multiplied by the sum of its squarefree divisors (A048250(n)).
5
1, 6, 12, 12, 30, 72, 56, 24, 36, 180, 132, 144, 182, 336, 360, 48, 306, 216, 380, 360, 672, 792, 552, 288, 150, 1092, 108, 672, 870, 2160, 992, 96, 1584, 1836, 1680, 432, 1406, 2280, 2184, 720, 1722, 4032, 1892, 1584, 1080, 3312, 2256, 576, 392, 900
OFFSET
1,2
COMMENTS
Sum of reciprocals converges to Pi^2/6. The natural density of positive integers m such that A003557(m) = n equals 6/(a(n)*Pi^2).
If m is coprime to 6, a(3m) = a(4m).
Apparently the absolute values of the Dirichlet inverse of A000082. - R. J. Mathar, Mar 14 2011
LINKS
FORMULA
a(n) = n*A048250(n). Multiplicative with a(p^e) = (p+1)*p^e.
Dirichlet g.f. zeta(s-1)*zeta(s-2)/zeta(2*s-4). - R. J. Mathar, Mar 14 2011
G.f.: x*f'(x), where f(x) = Sum_{k>=1} mu(k)^2*k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 10 2017
Sum_{k=1..n} a(k) ~ n^3 / 3. - Vaclav Kotesovec, Feb 02 2019
Sum_{k>=1} 1/a(k) = Pi^2/6. - Vaclav Kotesovec, Sep 19 2020
MAPLE
A181797 := proc(n) local f; f := ifactors(n)[2] ; mul( op(1, d)^op(2, d)*( op(1, d)+1), d=f) ; end proc: # R. J. Mathar, Dec 05 2010
MATHEMATICA
Table[n*Sum[d*MoebiusMu[d]^2, {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 02 2019 *)
PROG
(Sage) A181797 = lambda n: n * sum(d for d in divisors(n) if is_squarefree(d)) # D. S. McNeil, Dec 05 2010
(PARI) a(n)=n*sumdiv(n, d, d*moebius(d)^2)
CROSSREFS
Sequence in context: A063722 A323058 A072294 * A185152 A028588 A327569
KEYWORD
nonn,easy,mult
AUTHOR
Matthew Vandermast, Dec 05 2010
STATUS
approved