login
A181797
a(n) = n multiplied by the sum of its squarefree divisors (A048250(n)).
5
1, 6, 12, 12, 30, 72, 56, 24, 36, 180, 132, 144, 182, 336, 360, 48, 306, 216, 380, 360, 672, 792, 552, 288, 150, 1092, 108, 672, 870, 2160, 992, 96, 1584, 1836, 1680, 432, 1406, 2280, 2184, 720, 1722, 4032, 1892, 1584, 1080, 3312, 2256, 576, 392, 900
OFFSET
1,2
COMMENTS
Sum of reciprocals converges to Pi^2/6. The natural density of positive integers m such that A003557(m) = n equals 6/(a(n)*Pi^2).
If m is coprime to 6, a(3m) = a(4m).
Apparently the absolute values of the Dirichlet inverse of A000082. - R. J. Mathar, Mar 14 2011
LINKS
FORMULA
a(n) = n*A048250(n). Multiplicative with a(p^e) = (p+1)*p^e.
Dirichlet g.f. zeta(s-1)*zeta(s-2)/zeta(2*s-4). - R. J. Mathar, Mar 14 2011
G.f.: x*f'(x), where f(x) = Sum_{k>=1} mu(k)^2*k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 10 2017
Sum_{k=1..n} a(k) ~ n^3 / 3. - Vaclav Kotesovec, Feb 02 2019
Sum_{k>=1} 1/a(k) = Pi^2/6. - Vaclav Kotesovec, Sep 19 2020
MAPLE
A181797 := proc(n) local f; f := ifactors(n)[2] ; mul( op(1, d)^op(2, d)*( op(1, d)+1), d=f) ; end proc: # R. J. Mathar, Dec 05 2010
MATHEMATICA
Table[n*Sum[d*MoebiusMu[d]^2, {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 02 2019 *)
PROG
(Sage) A181797 = lambda n: n * sum(d for d in divisors(n) if is_squarefree(d)) # D. S. McNeil, Dec 05 2010
(PARI) a(n)=n*sumdiv(n, d, d*moebius(d)^2)
CROSSREFS
Sequence in context: A063722 A323058 A072294 * A185152 A028588 A327569
KEYWORD
nonn,easy,mult
AUTHOR
Matthew Vandermast, Dec 05 2010
STATUS
approved