login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327069
Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and spanning edge-connectivity k.
24
1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 26, 28, 9, 1, 0, 296, 475, 227, 25, 1, 0, 6064, 14736, 10110, 1782, 75, 1, 0
OFFSET
0,7
COMMENTS
The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph.
We consider a graph with one vertex and no edges to be disconnected.
EXAMPLE
Triangle begins:
1
1 0
1 1 0
4 3 1 0
26 28 9 1 0
296 475 227 25 1 0
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_, eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds], Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], spanEdgeConn[Range[n], #]==k&]], {n, 0, 5}, {k, 0, n}]
CROSSREFS
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(1) = 1.
Column k = 1 is A327071.
Column k = 2 is A327146.
The unlabeled version (except with offset 1) is A263296.
Sequence in context: A083904 A215861 A327366 * A327334 A354794 A355401
KEYWORD
nonn,tabl,more
AUTHOR
Gus Wiseman, Aug 23 2019
EXTENSIONS
a(21)-a(27) from Robert Price, May 25 2021
STATUS
approved