login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355401
Triangle read by rows: T(n, k) = Sum_{i=1..n-k} inverse-q-binomial(n-k-1, i-1) * q-binomial(n-2+i, n-2) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = 1 for n >= 0, here q = 2.
0
1, 0, 1, 0, 1, 1, 0, 4, 3, 1, 0, 64, 28, 7, 1, 0, 4096, 960, 140, 15, 1, 0, 1048576, 126976, 9920, 620, 31, 1, 0, 1073741824, 66060288, 2666496, 89280, 2604, 63, 1, 0, 4398046511104, 136365211648, 2796552192, 48377856, 755904, 10668, 127, 1
OFFSET
0,8
COMMENTS
The Gaussian or q-binomial coefficients [n, k]_q for 0 <= k <= n are the basis for lower triangular matrices T_q, which are created by an unusual formula. This triangle is the result for q = 2. The general construction is as follows:
For some fixed integer q define the infinite lower triangular matrix M_q by M(q; n, 0) = 0 for n > 0, and M(q; n, n) = 1 for n >= 0, and M(q; n, k) = M(q; n-1, k-1) + q^(k-1) * M(q; n-1, k) for 0 < k < n. Then the matrix inverse I_q = M_q^(-1) exists, and M(q; n, k) = [n-1, k-1]_q for 0 < k <= n. Next define the triangle T_q by T(q; n, k) = Sum_{i=0..n-k} I(q; n-k, i) * M(q; n-1+i, n-1) for 0 < k <= n and T(q; n, 0) = 0^n for n >= 0. For q = 1 see A097805 and for q = 2 see this triangle.
Conjecture: T(q; n+1, 1) = q^(n*n-n) for n >= 0.
Conjecture: T(q; n, k) = q^((n-k-1)*(n-k)) * M(q; n, k) for 0 <= k <= n.
Conjecture: Define g(q; n) = -Sum_{i=0..n-1} [n, i]_q * g(q; i) * T(q; n+1-i, 1) for n > 0 with g(q; 0) = 1. Then the matrix inverse R_q = T_q^(-1) is given by R(q; n, k) = g(q; n-k) * M(q; n, k) for 0 <= k <= n, and g(q; n) = R(q; n+1, 1) for n >= 0.
FORMULA
Conjecture: T(n+1, 1) = A053763(n) = 2^(n*n - n) for n >= 0.
Conjecture: T(n, k) = 2^((n-k-1) * (n-k)) * A022166(n-1, k-1) for 0 < k <= n, and T(n, 0) = 0^n for n >= 0.
Conjecture: Define g(n) = -Sum_{i=0..n-1} A022166(n, i) * g(i) * T(n+1-i, 1) for n > 0 with g(0) = 1. Then matrix inverse R = T^(-1) is given by R(n, 0) = 0^n for n >= 0, and R(n, k) = g(n-k) * A022166(n-1, k-1) for 0 < k <= n, and g(n) = R(n+1, 1) for n >= 0.
EXAMPLE
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8
==================================================================================
0 : 1
1 : 0 1
2 : 0 1 1
3 : 0 4 3 1
4 : 0 64 28 7 1
5 : 0 4096 960 140 15 1
6 : 0 1048576 126976 9920 620 31 1
7 : 0 1073741824 66060288 2666496 89280 2604 63 1
8 : 0 4398046511104 136365211648 2796552192 48377856 755904 10668 127 1
etc.
Matrix inverse R(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7
===============================================================
0 : 1
1 : 0 1
2 : 0 -1 1
3 : 0 -1 -3 1
4 : 0 -29 -7 -7 1
5 : 0 -2561 -435 -35 -15 1
6 : 0 -814309 -79391 -4495 -155 -31 1
7 : 0 -944455609 -51301467 -1667211 -40455 -651 -63 1
etc.
CROSSREFS
Cf. A022166, A053763 (column 1), A135950.
Sequence in context: A327069 A327334 A354794 * A195596 A332054 A129810
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Jun 30 2022
STATUS
approved