login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327070
Number of non-connected simple labeled graphs covering n vertices.
14
1, 0, 0, 0, 3, 40, 745, 21028, 973889, 80133088, 12523299729, 3847333778244, 2341705361100633, 2821794389863015840, 6728707109106848947081, 31769173063866390661714996, 297278309767391164611330317921
OFFSET
0,5
COMMENTS
We consider the empty graph to be neither connected (one component) nor disconnected (more than one component).
FORMULA
a(n) = A006129(n) - A001187(n), if we assume A001187(0) = 0 and A001187(1) = 0.
Inverse binomial transform of A327199.
EXAMPLE
The a(4) = 3 graphs:
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1,4},{2,3}}
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Length[csm[#]]!=1&]], {n, 0, 5}]
CROSSREFS
Column k = 0 of A327149.
The unlabeled version is A327075.
The non-covering version is A327199.
Sequence in context: A051571 A019654 A361069 * A156356 A143640 A341849
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 24 2019
STATUS
approved