OFFSET
0,5
COMMENTS
Two blocks are nesting if they are of the form {...x,y...}, {...z,t...} where x < z < t < y or z < x < y < t. A set partition has its nesting blocks connected if the graph whose vertices are the blocks and whose edges are nesting pairs of blocks is connected.
EXAMPLE
The a(0) = 1 through a(6) = 21 set partitions:
{} {1} {12} {123} {1234} {12345} {123456}
{14}{23} {125}{34} {1236}{45}
{134}{25} {1245}{36}
{14}{235} {125}{346}
{145}{23} {1256}{34}
{15}{234} {126}{345}
{134}{256}
{1345}{26}
{1346}{25}
{136}{245}
{14}{2356}
{145}{236}
{1456}{23}
{146}{235}
{15}{2346}
{156}{234}
{16}{2345}
{15}{26}{34}
{16}{23}{45}
{16}{24}{35}
{16}{25}{34}
MATHEMATICA
nesXQ[stn_]:=MatchQ[stn, {___, {___, x_, y_, ___}, ___, {___, z_, t_, ___}, ___}/; x<z<t<y||z<x<y<t];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
nestcmpts[stn_]:=csm[Union[List/@stn, Select[Subsets[stn, {2}], nesXQ]]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Length[Select[sps[Range[n]], Length[nestcmpts[#]]<=1&]], {n, 0, 5}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jun 27 2019
STATUS
approved