login
A326335
Number of set partitions of {1..n} whose nesting blocks are connected.
5
1, 1, 1, 1, 2, 6, 21, 86, 394, 1974, 10696
OFFSET
0,5
COMMENTS
Two blocks are nesting if they are of the form {...x,y...}, {...z,t...} where x < z < t < y or z < x < y < t. A set partition has its nesting blocks connected if the graph whose vertices are the blocks and whose edges are nesting pairs of blocks is connected.
EXAMPLE
The a(0) = 1 through a(6) = 21 set partitions:
{} {1} {12} {123} {1234} {12345} {123456}
{14}{23} {125}{34} {1236}{45}
{134}{25} {1245}{36}
{14}{235} {125}{346}
{145}{23} {1256}{34}
{15}{234} {126}{345}
{134}{256}
{1345}{26}
{1346}{25}
{136}{245}
{14}{2356}
{145}{236}
{1456}{23}
{146}{235}
{15}{2346}
{156}{234}
{16}{2345}
{15}{26}{34}
{16}{23}{45}
{16}{24}{35}
{16}{25}{34}
MATHEMATICA
nesXQ[stn_]:=MatchQ[stn, {___, {___, x_, y_, ___}, ___, {___, z_, t_, ___}, ___}/; x<z<t<y||z<x<y<t];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
nestcmpts[stn_]:=csm[Union[List/@stn, Select[Subsets[stn, {2}], nesXQ]]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Length[Select[sps[Range[n]], Length[nestcmpts[#]]<=1&]], {n, 0, 5}]
CROSSREFS
Simple graphs whose nesting blocks are connected are A326330.
Set partitions whose crossing blocks are connected are A099947.
Set partitions whose capturing blocks are connected are A326336.
Sequence in context: A344229 A090805 A150226 * A256180 A150227 A263852
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jun 27 2019
STATUS
approved