The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326293 Number of non-nesting, topologically connected simple graphs with vertices {1..n}. 16
1, 1, 2, 4, 8, 27, 192, 1750 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d. A graph with positive integer vertices is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.
LINKS
MATHEMATICA
croXQ[eds_]:=MatchQ[eds, {___, {x_, y_}, ___, {z_, t_}, ___}/; x<z<y<t||z<x<t<y];
nesXQ[eds_]:=MatchQ[eds, {___, {x_, y_}, ___, {z_, t_}, ___}/; x<z<t<y||z<x<y<t];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], !nesXQ[#]&&Length[csm[Union[Subsets[#, {1}], Select[Subsets[#, {2}], croXQ]]]]<=1&]], {n, 0, 5}]
CROSSREFS
The inverse binomial transform is the covering case A326349.
Topologically connected simple graphs are A324328.
Non-crossing simple graphs are A054726.
Topologically connected set partitions are A099947.
Sequence in context: A037170 A212409 A006399 * A324328 A056800 A302915
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jun 29 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 08:31 EDT 2024. Contains 373383 sequences. (Running on oeis4.)