login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A326244
Number of labeled n-vertex simple graphs without crossing or nesting edges.
18
1, 1, 2, 8, 36, 160, 704, 3088, 13536, 59328, 260032, 1139712
OFFSET
0,3
COMMENTS
Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.
FORMULA
A006125(n) = a(n) + A326279(n).
Conjectures from Colin Barker, Jun 28 2019: (Start)
G.f.: (1 - x)*(1 - 4*x) / (1 - 6*x + 8*x^2 - 4*x^3).
a(n) = 6*a(n-1) - 8*a(n-2) + 4*a(n-3) for n>2.
(End)
MATHEMATICA
croXQ[stn_]:=MatchQ[stn, {___, {x_, y_}, ___, {z_, t_}, ___}/; x<z<y<t||z<x<t<y];
nestQ[stn_]:=MatchQ[stn, {___, {x_, y_}, ___, {z_, t_}, ___}/; x<z<t<y||z<x<y<t];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], !croXQ[#]&&!nestQ[#]&]], {n, 0, 5}]
CROSSREFS
The case for set partitions is A001519.
Simple graphs with crossing or nesting edges are A326279.
Sequence in context: A228791 A088675 A228197 * A027743 A152124 A147722
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jun 20 2019
STATUS
approved