login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326243
Number of capturing set partitions of {1..n}.
20
0, 0, 0, 0, 1, 11, 80, 503, 2993, 17609, 105017, 644528, 4107600, 27313805, 189866541, 1379728831, 10470032837, 82833202559, 681977545967, 5832430910181, 51723181525978, 474866750479993, 4506706112772881, 44151975623559477, 445958774322599940, 4638590033810841345
OFFSET
0,6
COMMENTS
A set partition is capturing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t. This is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.
LINKS
Eric Marberg, Crossings and nestings in colored set partitions, arXiv preprint arXiv:1203.5738 [math.CO], 2012.
FORMULA
a(n) = A000110(n) - A054391(n).
EXAMPLE
The a(5) = 11 capturing set partitions:
{{1,2,5},{3,4}}
{{1,3,4},{2,5}}
{{1,3,5},{2,4}}
{{1,4},{2,3,5}}
{{1,4,5},{2,3}}
{{1,5},{2,3,4}}
{{1},{2,5},{3,4}}
{{1,4},{2,3},{5}}
{{1,5},{2},{3,4}}
{{1,5},{2,3},{4}}
{{1,5},{2,4},{3}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
capXQ[stn_]:=MatchQ[stn, {___, {___, x_, ___, y_, ___}, ___, {___, z_, ___, t_, ___}, ___}/; x<z&&y>t||x>z&&y<t];
Table[Length[Select[sps[Range[n]], capXQ[#]&]], {n, 0, 8}]
CROSSREFS
Non-capturing set partitions are A054391.
Crossing and nesting set partitions are (both) A016098.
Sequence in context: A026897 A021024 A127021 * A091098 A091115 A024146
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 19 2019
EXTENSIONS
a(12) and beyond from Christian Sievers, Aug 23 2024
STATUS
approved