login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A021024 Expansion of 1/((1-x)(1-2x)(1-3x)(1-5x)). 1
1, 11, 80, 490, 2751, 14721, 76630, 392480, 1990901, 10041031, 50466780, 253122870, 1267989451, 6347088941, 31756902530, 158848951660, 794438206401, 3972771638451, 19865600535880, 99333230758850, 496681840129751, 2483456263849561, 12417422517238830 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = stirling2(n+4,4) + stirling2(n+4,5). - Zerinvary Lajos, Oct 04 2007
a(0)=1, a(1)=11, a(2)=80, a(3)=490; for n>3, a(n) = 11*a(n-1) -41*a(n-2) +61*a(n-3) -30*a(n-4). - Vincenzo Librandi, Jul 05 2013
a(n) = 8*a(n-1) -15*a(n-2) +2^n -1. - Vincenzo Librandi, Jul 05 2013
a(n) = (5^(n+3) - 6*3^(n+3) + 8*2^(n+3) - 3)/24. [Yahia Kahloune, Jul 07 2013]
MAPLE
with(combinat): seq(stirling2(n+4, 4) +stirling2(n+4, 5), n=0..23); # Zerinvary Lajos, Oct 04 2007
MATHEMATICA
CoefficientList[Series[1 / ((1 - x) (1 - 2 x) (1 - 3 x) (1 -5 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 05 2013 *)
PROG
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-2*x)*(1-3*x)*(1-5*x)))); /* or */ I:=[1, 11, 80, 490]; [n le 4 select I[n] else 11*Self(n-1)-41*Self(n-2)+61*Self(n-3)-30*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 05 2013
CROSSREFS
Sequence in context: A159663 A227244 A026897 * A127021 A326243 A091098
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 14:52 EST 2023. Contains 367727 sequences. (Running on oeis4.)