login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A021021
Expansion of 1/((1-10x)(1-11x)(1-12x)).
0
1, 33, 727, 13365, 221431, 3428733, 50631967, 721942485, 10021257511, 136192514733, 1819621847407, 23973890545605, 312209398691191, 4026262617877533, 51492399583946047, 653858524870924725
OFFSET
0,2
FORMULA
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-2) = f(n,2,10) for n >= 2. - Milan Janjic, Apr 26 2009
a(n) = 33*a(n-1) - 362*a(n-2) + 1320*a(n-3), n >= 3. - Vincenzo Librandi, Mar 18 2011
a(n) = 23*a(n-1) - 132*a(n-2) + 10^n, n >= 2. - Vincenzo Librandi, Mar 18 2011
a(n) = 6*12^(n+1) - 11^(n+2) + 5*10^(n+1). - R. J. Mathar, Mar 18 2011
MATHEMATICA
CoefficientList[Series[1/((1-10x)(1-11x)(1-12x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{33, -362, 1320}, {1, 33, 727}, 30] (* Harvey P. Dale, Apr 27 2012 *)
CROSSREFS
Sequence in context: A028020 A025130 A081141 * A164750 A100788 A051565
KEYWORD
nonn
STATUS
approved