login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326248
Number of crossing, nesting set partitions of {1..n}.
13
0, 0, 0, 0, 0, 2, 28, 252, 1890, 13020, 86564, 571944, 3826230, 26233662, 185746860, 1364083084, 10410773076, 82609104802, 681130756224, 5829231836494, 51711093240518, 474821049202852, 4506533206814480, 44151320870760216, 445956292457725714
OFFSET
0,6
COMMENTS
A set partition is crossing if it has two blocks of the form {...x,y...}, {...z,t...} where x < z < y < t or z < x < t < y, and nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x < z < t < y or z < x < y < t.
LINKS
FORMULA
a(n) = A000110(n) - 2*A000108(n) + A001519(n). - Christian Sievers, Oct 16 2024
EXAMPLE
The a(5) = 2 set partitions:
{{1,4},{2,3,5}}
{{1,3,4},{2,5}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
croXQ[stn_]:=MatchQ[stn, {___, {___, x_, y_, ___}, ___, {___, z_, t_, ___}, ___}/; x<z<y<t||z<x<t<y];
nesXQ[stn_]:=MatchQ[stn, {___, {___, x_, y_, ___}, ___, {___, z_, t_, ___}, ___}/; x<z<t<y||z<x<y<t];
Table[Length[Select[sps[Range[n]], nesXQ[#]&&croXQ[#]&]], {n, 0, 8}]
CROSSREFS
Crossing and nesting set partitions are (both) A016098.
Crossing, capturing set partitions are A326246.
Nesting, non-crossing set partitions are A122880.
Sequence in context: A147537 A183067 A056261 * A230270 A230759 A229581
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 20 2019
EXTENSIONS
a(11) and beyond from Christian Sievers, Oct 16 2024
STATUS
approved