login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326333
Number of integer partitions of n with sortable prime factors.
2
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 99, 132, 171, 222, 283, 363, 457, 577, 721, 902, 1115, 1379, 1693, 2076, 2530, 3077, 3723, 4500, 5410, 6494, 7765, 9270, 11025, 13089, 15491, 18307, 21569, 25369, 29765, 34869, 40750, 47546, 55361, 64367, 74685, 86529
OFFSET
0,3
COMMENTS
An integer partition has sortable prime factors if there is a permutation (c_1,...,c_k) of the parts such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the partition (27,8,6) is sortable because the permutation (8,6,27) satisfies the condition.
FORMULA
A000041(n) = a(n) + A326332(n).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#, OrderedQ[PadRight[{#1, #2}]]&]]&]], {n, 0, 20}]
CROSSREFS
Unsortable integer partitions are A326332.
Sortable normal multiset partitions are A326212.
Sortable factorizations are A326334.
Sequence in context: A008634 A347577 A238869 * A036011 A325856 A104501
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 27 2019
STATUS
approved