login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008634
Molien series for A_11.
1
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 99, 131, 169, 219, 278, 355, 445, 560, 695, 863, 1060, 1303, 1586, 1930, 2331, 2812, 3370, 4035, 4802, 5708, 6751, 7972, 9373, 11004, 12866, 15021, 17475, 20298, 23501, 27169, 31316, 36043, 41373, 47420, 54218, 61903, 70515, 80215, 91058, 103226, 116792, 131970, 148848
OFFSET
0,3
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, 0, -1, -2, 0, 0, 0, 1, 2, 0, 1, 2, 0, -2, 0, -2, -3, -1, 0, -1, 1, 3, 0, 2, 3, 1, -1, 1, -1, -3, -2, 0, -3, -1, 1, 0, 1, 3, 2, 0, 2, 0, -2, -1, 0, -2, -1, 0, 0, 0, 2, 1, 0, 0, 0, -1, -1, 1).
FORMULA
G.f.: (1+x^55)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)*(1-x^9)*(1-x^10)*(1-x^11)).
MAPLE
gf:= (1+x^55)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)/(1-x^11):
seq(coeff(series(gf, x, n+1), x, n), n=0..70);
MATHEMATICA
CoefficientList[Series[(1+x^55)/Times@@(1-x^Range[11]), {x, 0, 60}], x] (* Harvey P. Dale, Jul 27 2024 *)
CROSSREFS
Differs from A008640 at 55th term.
Sequence in context: A192061 A218511 A008640 * A347577 A238869 A326333
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Corrected by Harvey P. Dale, Jul 21 2024
a(55) restored by Sean A. Irvine, Jul 27 2024
STATUS
approved