login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Molien series for A_11.
1

%I #27 Jul 27 2024 19:26:57

%S 1,1,2,3,5,7,11,15,22,30,42,56,76,99,131,169,219,278,355,445,560,695,

%T 863,1060,1303,1586,1930,2331,2812,3370,4035,4802,5708,6751,7972,9373,

%U 11004,12866,15021,17475,20298,23501,27169,31316,36043,41373,47420,54218,61903,70515,80215,91058,103226,116792,131970,148848

%N Molien series for A_11.

%D D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

%H <a href="/index/Mo#Molien">Index entries for Molien series</a>

%H <a href="/index/Rec#order_61">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, 0, 0, 0, -1, -2, 0, 0, 0, 1, 2, 0, 1, 2, 0, -2, 0, -2, -3, -1, 0, -1, 1, 3, 0, 2, 3, 1, -1, 1, -1, -3, -2, 0, -3, -1, 1, 0, 1, 3, 2, 0, 2, 0, -2, -1, 0, -2, -1, 0, 0, 0, 2, 1, 0, 0, 0, -1, -1, 1).

%F G.f.: (1+x^55)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)*(1-x^9)*(1-x^10)*(1-x^11)).

%p gf:= (1+x^55)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)/(1-x^11):

%p seq(coeff(series(gf, x, n+1), x, n), n=0..70);

%t CoefficientList[Series[(1+x^55)/Times@@(1-x^Range[11]),{x,0,60}],x] (* _Harvey P. Dale_, Jul 27 2024 *)

%Y Differs from A008640 at 55th term.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_.

%E Corrected by _Harvey P. Dale_, Jul 21 2024

%E a(55) restored by _Sean A. Irvine_, Jul 27 2024