OFFSET
0,3
COMMENTS
When a general definition was made in a recent paper, it was slightly different from the previous definition. Please check the annotation on page 15 of the paper in 2019.
LINKS
Seiichi Manyama, Rows n = 0..15, flattened
Kazufumi Kimoto, Masato Wakayama, Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators, Kyushu Journal of Mathematics, Vol. 60 (2006) No. 2 p. 383-404 (see Table 2).
Kazufumi Kimoto, Masato Wakayama, Apéry-like numbers for non-commutative harmonic oscillators and automorphic integrals, arXiv:1905.01775 [math.PR], 2019. See p.22.
FORMULA
4*n^2 * Jtilde_k(n) = (8*n^2 - 8*n + 3) * Jtilde_k(n-1) - 4*(n - 1)^2 * Jtilde_k(n-2) + 4 * Jtilde_{k - 2}(n-1).
Jtilde_n(2*n+1) = Jtilde_n(2*n+2) = 1/A001044(n). So T(n,2*n+1) = T(n,2*n+2) = 1.
EXAMPLE
Triangle begins:
1, 1;
2/3, 3/4, 1, 1;
8/15, 41/64, 65/48, 11/8, 1/4, 1/4;
16/35, 147/256, 13247/8640, 907/576, 109/216, 73/144, 1/36, 1/36;
PROG
(Ruby)
def f(n)
return 1 if n < 2
(1..n).inject(:*)
end
def Jtilde(k, n)
return 0 if k == 0
return (2r ** n * f(n)) ** 2 / f(2 * n + 1) if k == 1
if n == 0
return 1 if k == 2
return 0
end
if n == 1
return 3r / 4 if k == 2
return 1 if k == 3 || k == 4
return 0
end
((8r * n * n - 8 * n + 3) * Jtilde(k, n - 1) - 4 * (n - 1) ** 2 * Jtilde(k, n - 2) + 4 * Jtilde(k - 2, n - 1)) / (4 * n * n)
end
def A326303(n)
(0..n).map{|i| (1..2 * i + 2).map{|j| Jtilde(j, i).numerator}}.flatten
end
p A326303(10)
CROSSREFS
KEYWORD
nonn,frac,tabf
AUTHOR
Seiichi Manyama, Oct 19 2019
STATUS
approved