login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326303
Triangular array, read by rows: T(n,k) = numerator of Jtilde_k(n), 1 <= k <= 2*n+2.
2
1, 1, 2, 3, 1, 1, 8, 41, 65, 11, 1, 1, 16, 147, 13247, 907, 109, 73, 1, 1, 128, 8649, 704707, 1739, 101717, 3419, 515, 43, 1, 1, 256, 32307, 660278641, 6567221, 4557449, 29273, 76667, 15389, 251, 67, 1, 1, 1024, 487889, 357852111131, 54281321, 15689290781, 151587391, 115560397, 1659311, 254977, 34061, 1733, 289, 1, 1
OFFSET
0,3
COMMENTS
When a general definition was made in a recent paper, it was slightly different from the previous definition. Please check the annotation on page 15 of the paper in 2019.
LINKS
Seiichi Manyama, Rows n = 0..15, flattened
Kazufumi Kimoto, Masato Wakayama, Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators, Kyushu Journal of Mathematics, Vol. 60 (2006) No. 2 p. 383-404 (see Table 2).
Kazufumi Kimoto, Masato Wakayama, Apéry-like numbers for non-commutative harmonic oscillators and automorphic integrals, arXiv:1905.01775 [math.PR], 2019. See p.22.
FORMULA
4*n^2 * Jtilde_k(n) = (8*n^2 - 8*n + 3) * Jtilde_k(n-1) - 4*(n - 1)^2 * Jtilde_k(n-2) + 4 * Jtilde_{k - 2}(n-1).
Jtilde_n(2*n+1) = Jtilde_n(2*n+2) = 1/A001044(n). So T(n,2*n+1) = T(n,2*n+2) = 1.
EXAMPLE
Triangle begins:
1, 1;
2/3, 3/4, 1, 1;
8/15, 41/64, 65/48, 11/8, 1/4, 1/4;
16/35, 147/256, 13247/8640, 907/576, 109/216, 73/144, 1/36, 1/36;
PROG
(Ruby)
def f(n)
return 1 if n < 2
(1..n).inject(:*)
end
def Jtilde(k, n)
return 0 if k == 0
return (2r ** n * f(n)) ** 2 / f(2 * n + 1) if k == 1
if n == 0
return 1 if k == 2
return 0
end
if n == 1
return 3r / 4 if k == 2
return 1 if k == 3 || k == 4
return 0
end
((8r * n * n - 8 * n + 3) * Jtilde(k, n - 1) - 4 * (n - 1) ** 2 * Jtilde(k, n - 2) + 4 * Jtilde(k - 2, n - 1)) / (4 * n * n)
end
def A326303(n)
(0..n).map{|i| (1..2 * i + 2).map{|j| Jtilde(j, i).numerator}}.flatten
end
p A326303(10)
CROSSREFS
Cf. A260832 (k=2), A264541 (k=3), A326748 (denominator).
Sequence in context: A135900 A338072 A173272 * A047789 A068869 A251046
KEYWORD
nonn,frac,tabf
AUTHOR
Seiichi Manyama, Oct 19 2019
STATUS
approved