login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A326300
Steinhaus sums.
0
2, 6, 8, 16, 18, 22, 24, 40, 42, 46, 48, 56, 58, 62, 64, 96, 98, 102, 104, 112, 114, 118, 120, 136, 138, 142, 144, 152, 154, 158, 160, 224, 226, 230, 232, 240, 242, 246, 248, 264, 266, 270, 272, 280, 282, 286, 288, 320, 322, 326, 328, 336, 338, 342, 344, 360, 362, 366, 368
OFFSET
1,1
LINKS
Sandor Csörgö, Gordon Simons, On Steinhaus' resolution of the St. Petersburg paradox, Probab. Math. Statist. 14 (1993), 157--172. MR1321758 (96b:60017). See p. 163 and Table 1 p. 171.
FORMULA
a(n) = Sum_{k>=1} floor(n/2^k + 1/2)*2^k.
a(n) = 2 * A006520(n-1).
PROG
(PARI) a(n) = sum(k=1, 1+log(n)\log(2), floor(n/2^k+1/2)*2^k);
(Python)
def a(n):
s = 0
for k in range(1, n.bit_length()+1):
s += ((n + (1 << (k-1))) >> k) << k
return s
print([a(n) for n in range(1, 60)]) # Darío Clavijo, Aug 24 2024
CROSSREFS
Cf. A000523 (log_2(n)), A006520.
Sequence in context: A336896 A306906 A174658 * A266074 A191822 A238549
KEYWORD
nonn
AUTHOR
Michel Marcus, Oct 17 2019
STATUS
approved