The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238549 a(n) is one fourth of the total number of free ends of 4 line segments expansion at n iterations (see Comments lines for definition). 2
 1, 2, 6, 8, 16, 20, 36, 44, 76, 92, 156, 188, 316, 380, 636, 764, 1276, 1532, 2556, 3068, 5116, 6140, 10236, 12284, 20476, 24572, 40956, 49148, 81916, 98300, 163836, 196604, 327676, 393212, 655356, 786428, 1310716, 1572860, 2621436, 3145724, 5242876, 6291452, 10485756 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The initial pattern consists of 4 straight line segments which are the radii of a square. The next generations are scaled down by a factor of 1/sqrt(2) and rotated by an angle of Pi/4. Their free ends are the ends of elements that do not contact or cross the other ones. Overlaps among different generations are prohibited. See illustration in the links. We take the official definition to be that provided by the PARI program. From this the assertions in the Formula section follow (they were formerly stated as conjectures). - N. J. A. Sloane, Feb 24 2019 From Georg Fischer, Feb 20 2019: (Start) The following pattern can be seen for a(n) in base 2:    n         a(n)   ==  ==================    1    1 =          1_2    2    2 =         10_2    3    6 =        110_2    4    8 =       1000_2    5   16 =      10000_2    6   20 =      10100_2    7   36 =     100100_2    8   44 =     101100_2    9   76 =    1001100_2   10   92 =    1011100_2   11  156 =   10011100_2   12  188 =   10111100_2   13  316 =  100111100_2   14  380 =  101111100_2   15  636 = 1001111100_2   16  764 = 1011111100_2 (End) LINKS Kival Ngaokrajang, Illustration of initial terms FORMULA a(n) =  1 + Sum_{i=1..n-1} A143095(i). G.f.: x*(2*x^2+x+1) / ((x-1)*(2*x^2-1)). - Colin Barker, May 02 2015 From Georg Fischer, Feb 20 2019: (Start) With p = floor((n + 2) / 2) for n >= 4: if n even then a(n) = 2^p + 4 * (2^(p - 4) - 1); if n odd then a(n) = 2^p + 4 * (2^(p - 3) - 1). a(n) = a(n - 1) + 2 * a(n - 2) - 2 * a(n - 3). (End) EXAMPLE The first numbers of free ends (4*a(n)) are 4, 8, 24, 32, 64, 80, 144, 176, 304, 368, 624, ... PROG (PARI) {print1(1, ", "); for (n=1, 100, s=1; for (i=0, n-1, s=s+(5-3*(-1)^i)*2^(1/4*(2*i-1+(-1)^i))/2); print1(s, ", "))} (Sage) def a():     s, n = 2, 1     yield 1     while True:         yield s         s += (5-3*(-1)^n)*2^((2*n-1+(-1)^n)//4)//2         n += 1 A238549 = a(); [next(A238549) for _ in range(43)] # Peter Luschny, Feb 24 2019 CROSSREFS Cf. A143095, A256641. Sequence in context: A326300 A266074 A191822 * A237502 A279726 A331974 Adjacent sequences:  A238546 A238547 A238548 * A238550 A238551 A238552 KEYWORD nonn AUTHOR Kival Ngaokrajang, May 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 12:32 EST 2020. Contains 331996 sequences. (Running on oeis4.)