login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326305
Dirichlet g.f.: zeta(s-1) * (1 - 2^(-s)) / zeta(s).
4
1, 0, 2, 1, 4, 0, 6, 2, 6, 0, 10, 2, 12, 0, 8, 4, 16, 0, 18, 4, 12, 0, 22, 4, 20, 0, 18, 6, 28, 0, 30, 8, 20, 0, 24, 6, 36, 0, 24, 8, 40, 0, 42, 10, 24, 0, 46, 8, 42, 0, 32, 12, 52, 0, 40, 12, 36, 0, 58, 8, 60, 0, 36, 16, 48, 0, 66, 16, 44, 0, 70, 12, 72, 0, 40
OFFSET
1,3
COMMENTS
Moebius transform of A026741.
Dirichlet convolution of A002131 with Dirichlet inverse of A000005.
Dirichlet convolution of A000027 with Dirichlet inverse of A001511.
LINKS
FORMULA
a(n) = phi(n) if n odd, phi(n) - phi(n/2) if n even, where phi = A000010.
a(n) = Sum_{d|n} mu(n/d) * A026741(d).
a(n) = Sum_{d|n} A007427(n/d) * A002131(d).
a(n) = Sum_{d|n} A092673(n/d) * d.
a(p) = p - 1, where p is odd prime.
Product_{n>=1} 1 / (1 - x^n)^a(n) = g.f. for A299069.
Sum_{k=1..n} a(k) ~ 9*n^2 / (4*Pi^2). - Vaclav Kotesovec, Oct 26 2019
Multiplicative with a(2^e) = 0 if e = 1 and 2^(e-2) otherwise, and a(p^e) = (p-1)*p^(e-1) for odd primes p. - Amiram Eldar, Nov 30 2020
MATHEMATICA
Table[Sum[MoebiusMu[n/d] Numerator[d/2], {d, Divisors[n]}], {n, 1, 75}]
a[n_] := If[OddQ[n], EulerPhi[n], EulerPhi[n] - EulerPhi[n/2]]; Table[a[n], {n, 1, 75}]
f[2, e_] := If[e == 1, 0, 2^(e - 2)]; f[p_, e_] := (p - 1)*p^(e - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)
PROG
(Magma) [IsOdd(n) select EulerPhi(n) else EulerPhi(n)-EulerPhi(n div 2) : n in [1..80]]; // Marius A. Burtea, Oct 17 2019
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Oct 17 2019
STATUS
approved