login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array, read by rows: T(n,k) = numerator of Jtilde_k(n), 1 <= k <= 2*n+2.
2

%I #54 Oct 24 2019 11:34:45

%S 1,1,2,3,1,1,8,41,65,11,1,1,16,147,13247,907,109,73,1,1,128,8649,

%T 704707,1739,101717,3419,515,43,1,1,256,32307,660278641,6567221,

%U 4557449,29273,76667,15389,251,67,1,1,1024,487889,357852111131,54281321,15689290781,151587391,115560397,1659311,254977,34061,1733,289,1,1

%N Triangular array, read by rows: T(n,k) = numerator of Jtilde_k(n), 1 <= k <= 2*n+2.

%C When a general definition was made in a recent paper, it was slightly different from the previous definition. Please check the annotation on page 15 of the paper in 2019.

%H Seiichi Manyama, <a href="/A326303/b326303.txt">Rows n = 0..15, flattened</a>

%H Kazufumi Kimoto, Masato Wakayama, <a href="http://doi.org/10.2206/kyushujm.60.383">Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators</a>, Kyushu Journal of Mathematics, Vol. 60 (2006) No. 2 p. 383-404 (see Table 2).

%H Kazufumi Kimoto, Masato Wakayama, <a href="https://arxiv.org/abs/1905.01775">Apéry-like numbers for non-commutative harmonic oscillators and automorphic integrals</a>, arXiv:1905.01775 [math.PR], 2019. See p.22.

%F 4*n^2 * Jtilde_k(n) = (8*n^2 - 8*n + 3) * Jtilde_k(n-1) - 4*(n - 1)^2 * Jtilde_k(n-2) + 4 * Jtilde_{k - 2}(n-1).

%F Jtilde_n(2*n+1) = Jtilde_n(2*n+2) = 1/A001044(n). So T(n,2*n+1) = T(n,2*n+2) = 1.

%e Triangle begins:

%e 1, 1;

%e 2/3, 3/4, 1, 1;

%e 8/15, 41/64, 65/48, 11/8, 1/4, 1/4;

%e 16/35, 147/256, 13247/8640, 907/576, 109/216, 73/144, 1/36, 1/36;

%o (Ruby)

%o def f(n)

%o return 1 if n < 2

%o (1..n).inject(:*)

%o end

%o def Jtilde(k, n)

%o return 0 if k == 0

%o return (2r ** n * f(n)) ** 2 / f(2 * n + 1) if k == 1

%o if n == 0

%o return 1 if k == 2

%o return 0

%o end

%o if n == 1

%o return 3r / 4 if k == 2

%o return 1 if k == 3 || k == 4

%o return 0

%o end

%o ((8r * n * n - 8 * n + 3) * Jtilde(k, n - 1) - 4 * (n - 1) ** 2 * Jtilde(k, n - 2) + 4 * Jtilde(k - 2, n - 1)) / (4 * n * n)

%o end

%o def A326303(n)

%o (0..n).map{|i| (1..2 * i + 2).map{|j| Jtilde(j, i).numerator}}.flatten

%o end

%o p A326303(10)

%Y Cf. A260832 (k=2), A264541 (k=3), A326748 (denominator).

%K nonn,frac,tabf

%O 0,3

%A _Seiichi Manyama_, Oct 19 2019