login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325485 One of the four successive approximations up to 5^n for the 5-adic integer 6^(1/4). This is the 2 (mod 5) case (except for n = 0). 10
0, 2, 22, 22, 397, 397, 6647, 6647, 319147, 319147, 6178522, 6178522, 103834772, 592116022, 3033522272, 9137037897, 70172194147, 222760084772, 3274517897272, 3274517897272, 60494976881647, 441964703444147, 1395639019850397, 3779824810866022, 51463540631178522 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n > 0, a(n) is the unique number k in [1, 5^n] and congruent to 2 mod 5 such that k^4 - 6 is divisible by 5^n.

For k not divisible by 5, k is a fourth power in 5-adic field if and only if k == 1 (mod 5). If k is a fourth power in 5-adic field, then k has exactly 4 fourth-power roots.

LINKS

Table of n, a(n) for n=0..24.

Wikipedia, p-adic number

FORMULA

a(n) = A325484(n)*A048898(n) mod 13^n = A325485(n)*A048899(n) mod 13^n.

For n > 0, a(n) = 5^n - A325486(n).

a(n)^2 == A324024(n) (mod 5^n).

EXAMPLE

The unique number k in [1, 5^2] and congruent to 2 modulo 5 such that k^4 - 6 is divisible by 5^2 is k = 22, so a(2) = 22.

The unique number k in [1, 5^3] and congruent to 2 modulo 5 such that k^4 - 6 is divisible by 5^3 is also k = 22, so a(3) is also 22.

PROG

(PARI) a(n) = lift(sqrtn(6+O(5^n), 4) * sqrt(-1+O(5^n)))

CROSSREFS

Cf. A048898, A048899, A324024, A325489, A325490, A325491, A325492.

Approximations of p-adic fourth-power roots:

A325484, this sequence, A325486, A325487 (5-adic, 6^(1/4));

A324077, A324082, A324083, A324084 (13-adic, 3^(1/4)).

Sequence in context: A335886 A141236 A079032 * A284063 A153826 A080283

Adjacent sequences:  A325482 A325483 A325484 * A325486 A325487 A325488

KEYWORD

nonn

AUTHOR

Jianing Song, Sep 07 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 19:38 EDT 2022. Contains 356189 sequences. (Running on oeis4.)