login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325487
One of the four successive approximations up to 13^n for the 13-adic integer 6^(1/4). This is the 4 (mod 5) case (except for n = 0).
9
0, 4, 4, 4, 379, 1004, 10379, 26004, 104129, 1276004, 9088504, 28619754, 126276004, 614557254, 3055963504, 27470026004, 57987604129, 57987604129, 820927057254, 16079716119754, 16079716119754, 206814579401004, 1637326054010379, 6405697636041629, 30247555546197879
OFFSET
0,2
COMMENTS
For n > 0, a(n) is the unique number k in [1, 5^n] and congruent to 4 mod 5 such that k^4 - 6 is divisible by 5^n.
For k not divisible by 5, k is a fourth power in 5-adic field if and only if k == 1 (mod 5). If k is a fourth power in 5-adic field, then k has exactly 4 fourth-power roots.
FORMULA
a(n) = A325485(n)*A048898(n) mod 5^n = A325486(n)*A048899(n) mod 5^n.
For n > 0, a(n) = 5^n - A325484(n).
a(n)^2 == A324023(n) (mod 5^n).
EXAMPLE
The unique number k in [1, 5^2] and congruent to 4 modulo 5 such that k^4 - 6 is divisible by 5^2 is k = 4, so a(2) = 4.
The unique number k in [1, 5^3] and congruent to 4 modulo 5 such that k^4 - 6 is divisible by 5^3 is also k = 4, so a(3) is also 4.
PROG
(PARI) a(n) = lift(-sqrtn(6+O(5^n), 4))
CROSSREFS
Approximations of p-adic fourth-power roots:
A325484, A325485, A325486, this sequence (5-adic, 6^(1/4));
A324077, A324082, A324083, A324084 (13-adic, 3^(1/4)).
Sequence in context: A353000 A372020 A182065 * A239351 A111481 A111763
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 07 2019
STATUS
approved