login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324512
Number of aperiodic n-gons.
4
1, 0, 0, 0, 10, 42, 357, 2400, 20142, 180280, 1814395, 19944804, 239500794, 3113326062, 43589143560, 653834280960, 10461394943992, 177843662409312, 3201186852863991, 60822549182544440, 1216451004087794832, 25545471063559372750, 562000363888803839989
OFFSET
1,5
COMMENTS
We define an n-gon to be aperiodic if all n rotations of its vertex set act on the edge set to give distinct n-gons. These are different from aperiodic graphs and acyclic graphs but are similar to aperiodic sequences (A000740) and aperiodic arrays (A323867).
FORMULA
a(n) = n * A324513(n).
EXAMPLE
The a(5) = 10 aperiodic polygon edge sets:
{{1,2},{1,3},{2,4},{3,5},{4,5}}
{{1,2},{1,3},{2,5},{3,4},{4,5}}
{{1,2},{1,4},{2,3},{3,5},{4,5}}
{{1,2},{1,4},{2,5},{3,4},{3,5}}
{{1,2},{1,5},{2,4},{3,4},{3,5}}
{{1,3},{1,4},{2,3},{2,5},{4,5}}
{{1,3},{1,5},{2,3},{2,4},{4,5}}
{{1,3},{1,5},{2,4},{2,5},{3,4}}
{{1,4},{1,5},{2,3},{2,4},{3,5}}
{{1,4},{1,5},{2,3},{2,5},{3,4}}
MATHEMATICA
rotgra[g_, m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m, 1, k+1])];
Table[Length[Select[Union[Sort[Sort/@Partition[#, 2, 1, 1]]&/@Permutations[Range[n]]], UnsameQ@@Table[Nest[rotgra[#, n]&, #, j], {j, n}]&]], {n, 8}]
PROG
(PARI) a(n)={if(n<3, n==1, (if(n%2, 0, -n*(n/2-1)!*2^(n/2-2)) + sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n))/2)} \\ Andrew Howroyd, Aug 19 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 04 2019
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Aug 19 2019
STATUS
approved