login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of aperiodic n-gons.
4

%I #11 Aug 19 2019 16:42:58

%S 1,0,0,0,10,42,357,2400,20142,180280,1814395,19944804,239500794,

%T 3113326062,43589143560,653834280960,10461394943992,177843662409312,

%U 3201186852863991,60822549182544440,1216451004087794832,25545471063559372750,562000363888803839989

%N Number of aperiodic n-gons.

%C We define an n-gon to be aperiodic if all n rotations of its vertex set act on the edge set to give distinct n-gons. These are different from aperiodic graphs and acyclic graphs but are similar to aperiodic sequences (A000740) and aperiodic arrays (A323867).

%H Andrew Howroyd, <a href="/A324512/b324512.txt">Table of n, a(n) for n = 1..200</a>

%H Gus Wiseman, <a href="/A324512/a324512.png">The a(5) = 10 aperiodic polygons</a>.

%H Gus Wiseman, <a href="/A324512/a324512_1.png">The a(6) = 42 aperiodic polygons</a>.

%F a(n) = n * A324513(n).

%e The a(5) = 10 aperiodic polygon edge sets:

%e {{1,2},{1,3},{2,4},{3,5},{4,5}}

%e {{1,2},{1,3},{2,5},{3,4},{4,5}}

%e {{1,2},{1,4},{2,3},{3,5},{4,5}}

%e {{1,2},{1,4},{2,5},{3,4},{3,5}}

%e {{1,2},{1,5},{2,4},{3,4},{3,5}}

%e {{1,3},{1,4},{2,3},{2,5},{4,5}}

%e {{1,3},{1,5},{2,3},{2,4},{4,5}}

%e {{1,3},{1,5},{2,4},{2,5},{3,4}}

%e {{1,4},{1,5},{2,3},{2,4},{3,5}}

%e {{1,4},{1,5},{2,3},{2,5},{3,4}}

%t rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];

%t Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,8}]

%o (PARI) a(n)={if(n<3, n==1, (if(n%2, 0, -n*(n/2-1)!*2^(n/2-2)) + sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n))/2)} \\ _Andrew Howroyd_, Aug 19 2019

%Y Cf. A000740, A008965, A027375, A059966, A060223, A192332, A275527, A323860, A323867, A323869, A324461, A324462, A324513, A324514.

%K nonn

%O 1,5

%A _Gus Wiseman_, Mar 04 2019

%E Terms a(10) and beyond from _Andrew Howroyd_, Aug 19 2019