login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324509
a(n) = numerator of Product_{d|n} (sigma(d)/tau(d)) where sigma(k) = the sum of the divisors of k (A000203) and tau(k) = the number of divisors of k (A000005).
2
1, 3, 2, 7, 3, 9, 4, 105, 26, 81, 6, 98, 7, 36, 36, 651, 9, 507, 10, 1323, 64, 81, 12, 11025, 31, 441, 260, 784, 15, 6561, 16, 13671, 144, 729, 144, 753571, 19, 225, 196, 893025, 21, 20736, 22, 2646, 2028, 324, 24, 423801, 76, 25947, 324, 16807, 27, 38025, 324
OFFSET
1,2
COMMENTS
Product_{d|n} (sigma(d)/tau(d)) >= 1 for all n >= 1.
FORMULA
a(p) = (p+1)/2 for odd primes p.
EXAMPLE
Product_{d|n} (sigma(d)/tau(d)) for n >= 1: 1, 3/2, 2, 7/2, 3, 9, 4, 105/8, 26/3, 81/4, 6, 98, 7, 36, 36, 651/8, ...
For n=4; Product_{d|4} (sigma(d)/tau(d)) = sigma(1)/tau(1) + sigma(2)/tau(2) + sigma(4)/tau(4) = (1/1) * (3/2) * (7/3) = 7/2; a(4) = 7.
MATHEMATICA
Table[Numerator[Product[DivisorSigma[1, k]/DivisorSigma[0, k], {k, Divisors[n]}]], {n, 1, 60}] (* G. C. Greubel, Mar 04 2019 *)
PROG
(Magma) [Numerator(&*[SumOfDivisors(d) / NumberOfDivisors(d): d in Divisors(n)]): n in [1..60]]
(Sage) [product(sigma(k, 1)/sigma(k, 0) for k in n.divisors()).numerator() for n in (1..60)] # G. C. Greubel, Mar 04 2019
CROSSREFS
Cf. A000005, A000203, A324510 (denominators).
Sequence in context: A257322 A276466 A289336 * A335653 A296512 A241558
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Mar 03 2019
STATUS
approved