OFFSET
1,2
COMMENTS
Product_{d|n} (sigma(d)/tau(d)) >= 1 for all n >= 1.
FORMULA
a(p) = (p+1)/2 for odd primes p.
EXAMPLE
Product_{d|n} (sigma(d)/tau(d)) for n >= 1: 1, 3/2, 2, 7/2, 3, 9, 4, 105/8, 26/3, 81/4, 6, 98, 7, 36, 36, 651/8, ...
For n=4; Product_{d|4} (sigma(d)/tau(d)) = sigma(1)/tau(1) + sigma(2)/tau(2) + sigma(4)/tau(4) = (1/1) * (3/2) * (7/3) = 7/2; a(4) = 7.
MATHEMATICA
Table[Numerator[Product[DivisorSigma[1, k]/DivisorSigma[0, k], {k, Divisors[n]}]], {n, 1, 60}] (* G. C. Greubel, Mar 04 2019 *)
PROG
(Magma) [Numerator(&*[SumOfDivisors(d) / NumberOfDivisors(d): d in Divisors(n)]): n in [1..60]]
(Sage) [product(sigma(k, 1)/sigma(k, 0) for k in n.divisors()).numerator() for n in (1..60)] # G. C. Greubel, Mar 04 2019
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Mar 03 2019
STATUS
approved