login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289336
a(n) = numerator of (sigma(n) / phi(n)).
6
1, 3, 2, 7, 3, 6, 4, 15, 13, 9, 6, 7, 7, 4, 3, 31, 9, 13, 10, 21, 8, 18, 12, 15, 31, 7, 20, 14, 15, 9, 16, 63, 12, 27, 2, 91, 19, 10, 7, 45, 21, 8, 22, 21, 13, 36, 24, 31, 19, 93, 9, 49, 27, 20, 9, 5, 20, 45, 30, 21, 31, 16, 26, 127, 7, 36, 34, 63, 24, 6, 36
OFFSET
1,2
LINKS
Jean-Marie De Koninck and Florian Luca, On the composition of the Euler function and the sum of divisors function, Colloquium Mathematicum, Vol. 108, No. 1 (2007), pp. 31-51.
FORMULA
a(n) = numerator of (A000203(n) / A000010(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A289412(k) = (Pi^4/36) * Product_{p prime} (1 + 2/p^3 - 1/p^5) = 3.6174451656... . - Amiram Eldar, Nov 21 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} A289412(k)/a(k) = Product_{p prime} (1 - 3/(p*(p + 1)) + 1/(p^2*(p + 1)) + ((p-1)^3/p^2)*Sum_{k>=3} 1/(p^k-1)) = 0.45782563109026414241... (De Koninck and Luca, 2007). - Amiram Eldar, Feb 27 2024
EXAMPLE
Fractions begin with: 1, 3, 2, 7/2, 3/2, 6, 4/3, 15/4, 13/6, 9/2, 6/5, 7, ...
For n = 7, sigma(7) / phi(7) = 8/6 = 4/3, a(7) = 4.
MATHEMATICA
Array[Numerator[DivisorSigma[1, #]/EulerPhi[#]] &, 71] (* Michael De Vlieger, Aug 19 2017 *)
PROG
(Magma) [Numerator(SumOfDivisors(n) / EulerPhi(n)): n in[1..1000]]
(PARI) a(n) = numerator(sigma(n)/eulerphi(n)); \\ Michel Marcus, Aug 21 2017
CROSSREFS
Cf. A289412 (denominators).
Sequence in context: A057020 A257322 A276466 * A324509 A335653 A296512
KEYWORD
nonn,easy,frac
AUTHOR
Jaroslav Krizek, Aug 19 2017
STATUS
approved