login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324507
a(n) = denominator of Product_{d|n} (d/tau(d)) where tau(k) = the number of divisors of k (A000005).
3
1, 1, 2, 3, 2, 4, 2, 3, 2, 4, 2, 1, 2, 4, 16, 15, 2, 4, 2, 9, 16, 4, 2, 1, 6, 4, 8, 9, 2, 256, 2, 45, 16, 4, 16, 1, 2, 4, 16, 9, 2, 256, 2, 9, 32, 4, 2, 25, 6, 36, 16, 9, 2, 64, 16, 9, 16, 4, 2, 16, 2, 4, 32, 315, 16, 256, 2, 9, 16, 256, 2, 1, 2, 4, 32, 9, 16
OFFSET
1,3
COMMENTS
Product_{d|n} (d/tau(d)) >= 1 for all n >= 1.
LINKS
FORMULA
a(p) = 2 for odd primes p.
a(n) = 1 for numbers n in A324508.
EXAMPLE
Product_{d|n} (d/tau(d)) for n >= 1: 1, 1, 3/2, 4/3, 5/2, 9/4, 7/2, 8/3, 9/2, 25/4, 11/2, 6, 13/2, 49/4, 225/16, ...
For n=4; Product_{d|4} (d/tau(d)) = (1/tau(1)) * (2/tau(2)) * (4/tau(4)) = (1/1) * (2/2) * (4/3) = 4/3; a(4) = 3.
MAPLE
f:= proc(n) local d; denom(mul(d/numtheory:-tau(d), d=numtheory:-divisors(n))) end proc:
map(f, [$1..100]); # Robert Israel, Jan 04 2021
MATHEMATICA
Table[Denominator[Product[k/DivisorSigma[0, k], {k, Divisors[n]}]], {n, 1, 100}] (* G. C. Greubel, Mar 04 2019 *)
PROG
(Magma) [Denominator(&*[d / NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]]
(Sage) [product(k/sigma(k, 0) for k in n.divisors()).denominator() for n in (1..100)] # G. C. Greubel, Mar 04 2019
CROSSREFS
Cf. A000005, A324506 (numerators), A324508.
Sequence in context: A340218 A199968 A066482 * A123725 A089080 A085058
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Mar 03 2019
STATUS
approved