login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123725
Numerators of fractional partial quotients appearing in a continued fraction for the power series Sum_{n>=0} x^(2^n - 1)/(n+1)^s.
4
1, 2, -3, -2, -4, 2, 3, -2, -5, 2, -3, -2, 4, 2, 3, -2, -6, 2, -3, -2, -4, 2, 3, -2, 5, 2, -3, -2, 4, 2, 3, -2, -7, 2, -3, -2, -4, 2, 3, -2, -5, 2, -3, -2, 4, 2, 3, -2, 6, 2, -3, -2, -4, 2, 3, -2, 5, 2, -3, -2, 4, 2, 3, -2, -8, 2, -3, -2, -4, 2, 3, -2, -5, 2, -3, -2, 4, 2, 3, -2, -6, 2, -3, -2, -4, 2, 3, -2, 5, 2, -3, -2, 4, 2, 3, -2, 7, 2, -3, -2, -4, 2
OFFSET
0,2
LINKS
FORMULA
a(n) = (A007814(n) + 2) * (-1)^A073089(n+1), n>=1, with a(0)=1.
a(n) = A089080(n+1) * (-1)^A073089(n+1) for n>=0.
EXAMPLE
Surprisingly, the following analog of the Riemann zeta function:
Z(x,s) = Sum_{n>=0} x^(2^n-1)/(n+1)^s = 1 + x/2^s + x^3/3^s +x^7/4^s+..
may be expressed by the continued fraction:
Z(x,s) = [1; f(1)^s/x, -f(2)^s/x, -f(3)^s/x,...,f(n)^s*(-1)^e(n)/x,...]
such that the (2^n-1)-th convergent = Sum_{k=0..n} x^(2^k-1)/(k+1)^s,
where f(n) = (b(n)+2)/(b(n)+1)^2 and e(n) = A073089(n+1) for n>=1,
and b(n) = A007814(n) the exponent of highest power of 2 dividing n.
Thus a(n) = (A007814(n) + 2)*(-1)^A073089(n+1) are numerators and
A123726(n) = (A007814(n) + 1)^2 are denominators of partial quotients.
Case s=1.
Sum_{n>=0} x^(2^n-1)/(n+1) = [1; 2/x, -(3/4)/x, -2/x, -(4/9)/x, 2/x,
(3/4)/x, -2/x, -(5/16)/x, 2/x, -(3/4)/x, -2/x, (4/9)/x, 2/x, (3/4)/x,
-2/x, -(6/25)/x, 2/x, -(3/4)/x, -2/x, -(4/9)/x, 2/x, (3/4)/x, -2/x,...].
Note that (2^n-1)-th convergents exactly equal n-th partial sums:
[1;2/x] = 1 + x/2;
[1;2/x,-(3/4)/x,-2/x] = 1 + x/2 + x^3/3;
[1;2/x,-(3/4)/x,-2/x,-(4/9)/x,2/x,(3/4)/x,-2/x] = 1 +x/2 +x^3/3 +x^7/4.
Case s=2.
Sum_{n>=0} x^(2^n-1)/(n+1)^2 = [1; 4/x, -(9/16)/x, -4/x, -(16/81)/x,
4/x, (9/16)/x, -4/x, -(25/256)/x, 4/x, -(9/16)/x, -4/x, (16/81)/x, 4/x,
(9/16)/x, -4/x, -(36/625)/x, 4/x, -(9/16)/x, -4/x, (16/81)/x, 4/x ...].
Note that (2^n-1)-th convergents exactly equal n-th partial sums:
[1;4/x] = 1 + x/4;
[1;4/x,-(9/16)/x,-4/x] = 1 + x/4 + x^3/9;
[1;4/x,-(9/16)/x,-4/x,-(16/81)/x,4/x,(9/16)/x,-4/x]=1+x/4+x^3/9+x^7/16.
Case s=3.
Sum_{n>=0} x^(2^n-1)/(n+1)^3 = [1; 8/x,-(27/64)/x,-8/x,-(64/729)/x,8/x,
(27/64)/x,-8/x,-(125/4096)/x, 8/x,-(27/64)/x,-8/x, (64/729)/x, 8/x,
(27/64)/x,-8/x,-(216/15625)/x, 8/x, -(27/64)/x, -8/x, (64/729)/x ...].
Likewise, the (2^n-1)-th convergents exactly equal n-th partial sums.
It is conjectured that these patterns continue for all s.
PROG
(PARI) {a(n)=numerator(subst(contfrac(sum(m=0, #binary(n), 1/x^(2^m-1)/(m+1)), n+3)[n+1], x, 1))}
(PARI)
A007814(n) = valuation(n, 2);
A073089(n) = { if(n<=1, return(0)); n-=1; my(v=2^valuation(n, 2)); return((0==bitand(n, v<<1)) != (v%2)); }; \\ From A073089
A123725(n) = if(!n, 1, (A007814(n) + 2) * (-1)^A073089(n+1)); \\ Antti Karttunen, Nov 01 2018
CROSSREFS
Cf. A123726 (denominators); A007814, A073089, A089080 (unsigned).
Sequence in context: A199968 A066482 A324507 * A089080 A085058 A183152
KEYWORD
cofr,frac,sign
AUTHOR
Paul D. Hanna, Oct 12 2006
STATUS
approved